ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial and final de Sitter universes from modified $f(R)$ gravity

54   0   0.0 ( 0 )
 نشر من قبل Guido Cognola
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Viable models of modified gravity which satisfy both local as well as cosmological tests are investigated. It is demonstrated that so

قيم البحث

اقرأ أيضاً

We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu lting f(R) model has some remarkable properties. It naturally exhibits an unstable de Sitter era in the ultraviolet (UV), dynamically connected to a stable de Sitter era in the IR, via a period of radiation and matter domination, thereby describing a non-singular universe. We find that the UV de Sitter point is one of an infinite set, which make the UV RG fixed point inaccessible to classical cosmological evolution. In the vicinity of the fixed point, the model behaves as R^2 gravity, while it correctly recovers General Relativity at solar system scales. In this simplified model, the fluctuations are too large to be the observed ones, and more ingredients in the action are needed.
74 - Takeshi Chiba 2018
Recent cosmological observations are in good agreement with the scalar spectral index $n_s$ with $n_s-1simeq -2/N$, where $N$ is the number of e-foldings. In the previous work, the reconstruction of the inflaton potential for a given $n_s$ was studie d, and it was found that for $n_s-1=-2/N$, the potential takes the form of either $alpha$-attractor model or chaotic inflation model with $phi^2$ to the leading order in the slow-roll approximation. Here we consider the reconstruction of $f(R)$ gravity model for a given $n_s$ both in the Einstein frame and in the Jordan frame. We find that for $n_s-1=-2/N$ (or more general $n_s-1=-p/N$), $f(R)$ is given parametrically and is found to asymptote to $R^2$ for large $R$. This behavior is generic as long as the scalar potential is of slow-roll type.
63 - S. Fay 2007
We consider f(R) modified gravity theories in the metric variation formalism and attempt to reconstruct the function f(R) by demanding a background LCDM cosmology. In particular we impose the following requirements: a. A background cosmic history H(z ) provided by the usual flat LCDM parametrization though the radiation (w_eff=1/3), matter (w_eff=0) and deSitter (w_eff=-1) eras. b. Matter and radiation dominate during the `matter and `radiation eras respectively i.e. Omega_m =1 when w_eff=0 and Omega_r=1 when w_eff=1/3. We have found that the cosmological dynamical system constrained to obey the LCDM cosmic history has four critical points in each era which correspondingly lead to four forms of f(R). One of them is the usual general relativistic form f(R)=R-2Lambda. The other three forms in each era, reproduce the LCDM cosmic history but they do not satisfy requirement b. stated above. Only one of these forms (different from general relativity) is found to be an attractor of the dynamical cosmological evolution. It has (Omega_DE=1, Omega_r=0, Omega_m=0) throughout the evolution. Its phase space trajectory is numerically obtained.
In a recent work, Boyle, Finn and Turok hypothesized a model of universe that does not violate the CPT-symmetry as alternative for inflation. With this approach they described the birth of the Universe from a pair of universes, one the CPT image of t he other, living in pre- and post-big bang epochs. The CPT-invariance strictly constrains the vacuum states of the quantized fields, with notable consequences on the cosmological scenarios. Here we examine the validity of this proposal by adopting the point of view of archaic cosmology, based on de Sitter projective relativity, with an event-based reading of quantum mechanics, which is a consequence of the relationship between the universal information reservoir of the archaic universe and its out-of-equilibrium state through quantum jumps. In this scenario, the big bang is caused by the instability of the original (pre)vacuum with respect to the nucleation of micro-events that represent the actual creation of particles. Finally, we compare our results with those by Turok et al., including the analytic continuation across the big bang investigated by Volovik and show that many aspects of these cosmological scenarios find a clear physical interpretation by using our approach. Moreover, in the archaic universe framework we do not have to assume a priori the CPT-invariance like in the other models of universe, it is instead a necessary consequence of the archaic vacuum structure and the nucleation process, divided into two specular universes.
In gravity theories derived from a f(R) Lagrangian, matter is usually supposed to be minimally coupled to the metric, which hence defines a ``Jordan frame. However, since the field equations are fourth order, gravity possesses an extra degree of free dom on top of the standard graviton, as is manifest from its equivalent description in the conformally related, Einstein, frame. We introduce explicitly this extra scalar degree of freedom in the action and couple it to matter, so that the original metric no longer defines a Jordan frame. This ``detuning puts f(R) gravity into a wider class of scalar--tensor theories. We argue that a ``chameleon-like detuning tracing the background matter density may provide purely gravitational models which account for the present acceleration of the universe and evade local gravity constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا