ترغب بنشر مسار تعليمي؟ اضغط هنا

Can f(R) Modified Gravity Theories Mimic a LCDM Cosmology?

64   0   0.0 ( 0 )
 نشر من قبل Perivolaropoulos Leandros
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Fay




اسأل ChatGPT حول البحث

We consider f(R) modified gravity theories in the metric variation formalism and attempt to reconstruct the function f(R) by demanding a background LCDM cosmology. In particular we impose the following requirements: a. A background cosmic history H(z) provided by the usual flat LCDM parametrization though the radiation (w_eff=1/3), matter (w_eff=0) and deSitter (w_eff=-1) eras. b. Matter and radiation dominate during the `matter and `radiation eras respectively i.e. Omega_m =1 when w_eff=0 and Omega_r=1 when w_eff=1/3. We have found that the cosmological dynamical system constrained to obey the LCDM cosmic history has four critical points in each era which correspondingly lead to four forms of f(R). One of them is the usual general relativistic form f(R)=R-2Lambda. The other three forms in each era, reproduce the LCDM cosmic history but they do not satisfy requirement b. stated above. Only one of these forms (different from general relativity) is found to be an attractor of the dynamical cosmological evolution. It has (Omega_DE=1, Omega_r=0, Omega_m=0) throughout the evolution. Its phase space trajectory is numerically obtained.


قيم البحث

اقرأ أيضاً

Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmo logy, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca lar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
Taking advantage of the conformal equivalence of f(R) theories of gravity with General Relativity coupled to a scalar field we generalize the Israel junction conditions for this class of theories by direct integration of the field equations. We sugge st a specific non-minimal coupling of matter to gravity which opens the possibility of a new class of braneworld scenarios.
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar couplin g $Q$ with matter works to change the star radius in comparison to General Relativity, while the maximum allowed mass of neutron stars is hardly modified for both SLy and FPS equations of state. In Brans-Dicke theory with the massive potential $V(phi)=m^2 phi^2/2$, where $m^2$ is a positive constant, we show the difficulty of realizing neutron star solutions with a stable field profile due to the existence of an exponentially growing mode outside the star. As in $f(R)$ gravity with the $R^2$ term, this property is related to the requirement of extra boundary conditions of the field at the surface of star. For the self-coupling potential $V(phi)=lambda phi^4/4$, this problem can be circumvented by the fact that the second derivative $V_{,phi phi}=3lambdaphi^2$ approaches 0 at spatial infinity. In this case, we numerically show the existence of neutron star solutions for both SLy and FPS equations of state and discuss how the mass-radius relation is modified as compared to General Relativity.
Braneworld scenarios consider our observable universe as a brane embedded in a 5D space, named bulk. In this work, I derive the field equations of a braneworld model in a generalized theory of gravitation, namely $f(R,T)$ gravity, with $R$ and $T$, r epresenting the Ricci scalar and the trace of the energy-momentum tensor, respectively. The cosmological parameters obtained from this approach are in agreement with recent constraints from Supernovae Ia data combined with baryon acoustic oscillations and cosmic microwave background observations, favouring such an alternative description of the universe dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا