ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino-less Double Beta Decay of 48Ca studied by CaF2(Eu) Scintillators

458   0   0.0 ( 0 )
 نشر من قبل Saori Umehara
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We searched for the neutrino-less double beta decay(0nbb) of 48Ca by using CaF2(Eu) scintillators. Analysis of their pulse shapes was effective to reduce backgrounds. No events are observed in the Q-value region for the data of 3394 kg days. It gives a lower limit (90% confidence level) of T > 2.7 x 10^22 year for the half life of 0nbb of 48Ca. Combined with our previous data for 1553 kg days, we obtained more stringent limit of T > 5.8 x 10^22 year.

قيم البحث

اقرأ أيضاً

82 - Y. Iwata , N. Shimizu , Y. Utsuno 2014
Large-scale shell model calculations including two major shells are carried out, and the ingredients of nuclear matrix element for two-neutrino double beta decay are investigated. Based on the comparison between the shell model calculations accountin g only for one major shell ($pf$-shell) and those for two major shells ($sdpf$-shell), the effect due to the excitation across the two major shells is quantitatively evaluated.
A new phase of 116Cd double beta decay experiment is in progress in the Solotvina Underground Laboratory. Four enriched 116CdWO4 scintillators with total mass 339 g are used in a set up, whose active shield is made of 15 natural CdWO4 crystals (20.6 kg). The background rate in the energy interval 2.5-3.2 MeV is 0.03 counts/y*kg*keV. The half-life for 2-neutrino 2-beta decay of 116Cd is measured as T{1/2}(2-neutrino) = [2.6+-0.1(stat)-0.4+0.7}(syst)]*10**19 y. The T{1/2} limits for neutrinoless 2-beta decay of 116Cd are set as T{1/2} >= 0.7(2.5)*10**23 y at 90%(68%) C.L. for transition to ground state of 116Sn, while for decays to the first 2+ and second 0+ excited levels of 116Sn as T{1/2}>=1.3(4.8)*10**22 y and >=0.7(2.4)*10**22 y with 90%(68%) C.L., respectively. For 0-neutrino 2-beta decay with emission of one or two Majorons, the limits are T{1/2}(0-neutrino M1) >=3.7(5.8)*10**21 y and T{1/2}(0-neutrino M2)>=5.9(9.4)*10**20 y at 90%(68%) C.L. Restrictions on the value of the neutrino mass, right-handed admixtures in the weak interaction, and the neutrino-Majoron coupling constant are derived as: m(neutrino)<=2.6(1.4) eV, eta <=3.9*10**-8, lambda <=3.4*10**-6, and g{M}<= 12(9.5)*10**-5 at 90%(68%) C.L., respectively.
CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Labora tori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$times$yr to search for the neutrino-less double beta decay of $^{70}$Zn and for the neutrino-less positron-emitting electron capture of $^{64}$Zn. We found no evidence for these decays and set 90$%$ credible interval limits of ${rm T}_{1/2}^{0 ubetabeta}(^{70}{rm Zn}) > 1.6 times 10^{21}$ yr and ${rm T}_{1/2}^{0 u EC beta+}(^{64}{rm Zn}) > 1.2 times 10^{22}$ yr, surpassing by almost two orders of magnitude the previous experimental results
Energy resolution, alpha/beta ratio, pulse-shape discrimination for gamma rays and alpha particles, temperature dependence of scintillation properties, and radioactive contamination were studied with CaMoO4 crystal scintillators. A high sensitivity e xperiment to search for neutrinoless double beta decay of 100-Mo by using CaMoO4 scintillators is discussed.
PbWO4 crystal scintillators are discussed as an active shield and light-guides in 116Cd double beta decay experiment with CdWO4 scintillators. Scintillation properties and radioactive contamination of PbWO4 scintillators were investigated. Energy res olution of CdWO4 detector, coupled to PbWO4 crystal as a light-guide, was tested. Efficiency of PbWO4-based active shield to suppress background from the internal contamination of PbWO4 crystals was calculated. Using of lead tungstate crystal scintillators as high efficiency 4-pi active shield could allow to build sensitive double beta experiment with 116CdWO4 crystal scintillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا