ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of PbWO4 crystal scintillators in experiment to search for double beta decay of 116Cd

194   0   0.0 ( 0 )
 نشر من قبل Vladimir Tretyak
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

PbWO4 crystal scintillators are discussed as an active shield and light-guides in 116Cd double beta decay experiment with CdWO4 scintillators. Scintillation properties and radioactive contamination of PbWO4 scintillators were investigated. Energy resolution of CdWO4 detector, coupled to PbWO4 crystal as a light-guide, was tested. Efficiency of PbWO4-based active shield to suppress background from the internal contamination of PbWO4 crystals was calculated. Using of lead tungstate crystal scintillators as high efficiency 4-pi active shield could allow to build sensitive double beta experiment with 116CdWO4 crystal scintillators.



قيم البحث

اقرأ أيضاً

A new phase of 116Cd double beta decay experiment is in progress in the Solotvina Underground Laboratory. Four enriched 116CdWO4 scintillators with total mass 339 g are used in a set up, whose active shield is made of 15 natural CdWO4 crystals (20.6 kg). The background rate in the energy interval 2.5-3.2 MeV is 0.03 counts/y*kg*keV. The half-life for 2-neutrino 2-beta decay of 116Cd is measured as T{1/2}(2-neutrino) = [2.6+-0.1(stat)-0.4+0.7}(syst)]*10**19 y. The T{1/2} limits for neutrinoless 2-beta decay of 116Cd are set as T{1/2} >= 0.7(2.5)*10**23 y at 90%(68%) C.L. for transition to ground state of 116Sn, while for decays to the first 2+ and second 0+ excited levels of 116Sn as T{1/2}>=1.3(4.8)*10**22 y and >=0.7(2.4)*10**22 y with 90%(68%) C.L., respectively. For 0-neutrino 2-beta decay with emission of one or two Majorons, the limits are T{1/2}(0-neutrino M1) >=3.7(5.8)*10**21 y and T{1/2}(0-neutrino M2)>=5.9(9.4)*10**20 y at 90%(68%) C.L. Restrictions on the value of the neutrino mass, right-handed admixtures in the weak interaction, and the neutrino-Majoron coupling constant are derived as: m(neutrino)<=2.6(1.4) eV, eta <=3.9*10**-8, lambda <=3.4*10**-6, and g{M}<= 12(9.5)*10**-5 at 90%(68%) C.L., respectively.
A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Res olution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $gamma$ detector. Monte Carlo simulations of double $beta$ processes in $^{116}$Cd were used to estimate the sensitivity of an experiment to search for double $beta$ decay of $^{116}$Cd.
Energy resolution, alpha/beta ratio, pulse-shape discrimination for gamma rays and alpha particles, temperature dependence of scintillation properties, and radioactive contamination were studied with CaMoO4 crystal scintillators. A high sensitivity e xperiment to search for neutrinoless double beta decay of 100-Mo by using CaMoO4 scintillators is discussed.
201 - P.Belli , R.Bernabei , F.Cappella 2008
Double beta processes in 64-Zn, 70-Zn, 180-W, and 186-W have been searched for with the help of large volume (0.1-0.7 kg) low background ZnWO4 crystal scintillators at the Gran Sasso National Laboratories of the INFN. Total time of measurements excee ds 10 thousands hours. New improved half-life limits on double electron capture and electron capture with positron emission in 64-Zn have been set, in particular (all the limits are at 90% C.L.): T1/2(0nu2EC)> 1.1e20 yr, T1/2(2nuECbeta+)>7.0e20 yr, and T1/2(0nuECbeta+)>4.3e20 yr. The different modes of double beta processes in 70-Zn, 180-W, and 186-W have been restricted at the level of 1e17-1e20 yr.
115 - Giovanni Benato 2015
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr (90% CL). After a review of the experimental setup and of the main Phase I results, the hardware upgrade for Gerda Phase II is described, and the physics reach of the new data collection is reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا