ﻻ يوجد ملخص باللغة العربية
Inelastic neutron scattering (INS) experiments were performed to investigate the spin dynamics in magnetoelectric effect (ME) LiCoPO$_4$ single crystals. Weak dispersion was detected in the magnetic excitation spectra along the three principal crystallographic axes measured around the (0 1 0) magnetic reflection. Analysis of the data using linear spin-wave theory indicate that single-ion anisotropy in LiCoPO$_4$ is as important as the strongest nearest-neighbor exchange coupling. Our results suggest that Co$^{2+}$ single-ion anisotropy plays an important role in the spin dynamics of LiCoPO$_4$ and must be taken into account in understanding its physical properties. High resolution INS measurements reveal an anomalous low energy excitation that we hypothesize may be related to the magnetoelectric effect of LiCoPO$_4$.
The magnetic phase diagram of magnetoelectric LiCoPO$_4$ is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic $b$-axis. For fields greater than 11.9T the magnetic unit cell triples in size
Magnetic structures are investigated by means of neutron diffraction to shine a light on the intricate details that are believed to be key to understanding the magnetoelectric effect in LiCoPO$_4$ . At zero field, a spontaneous spin canting of $varph
Neutron diffraction with static and pulsed magnetic fields is used to directly probe the magnetic structures in LiNiPO$_4$ up to 25T and 42T, respectively. By combining these results with magnetometry and electric polarization measurements under puls
We present a study of terahertz frequency magnetoelectric effect in ferrimagnetic pyroelectric CaBaCo$_4$O$_7$ and its Ni-doped variants. The terahertz absorption spectrum of these materials consists of spin excitations and low-frequency infrared-act
Piezo-magnetoelectric effect, namely simultaneous induction of both the ferromagnetic moment and electric polarization by an application of uniaxial stress, was achieved in the non-ferroelectric and antiferromagnetic ground state of DyFeO$_3$. The in