ترغب بنشر مسار تعليمي؟ اضغط هنا

Standard Model tests with trapped radioactive atoms

46   0   0.0 ( 0 )
 نشر من قبل Gerald Gwinner
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear $beta$ decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.

قيم البحث

اقرأ أيضاً

49 - A. Gorelov 2004
We have set limits on contributions of scalar interactions to nuclear beta decay. A magneto-optical trap (MOT) provides a localized source of atoms suspended in space, so the low-energy recoiling nuclei can freely escape and be detected in coincidenc e with the beta. This allows reconstruction of the neutrino momentum, and the measurement of the beta-neutrino correlation, in a more direct fashion than previously possible. The beta-neutrino correlation parameter of the 0+ to 0+ pure Fermi decay of 38mK is $tilde{a}$=0.9981+-0.0030+-0.0037, consistent with the standard model prediction a=1.
57 - Dinko Pocanic 2015
Simple dynamics, few available decay channels, and extremely well controlled radiative and loop corrections, make pion and muon decays a sensitive means for testing the underlying symmetries, the universality of weak fermion couplings, as well as for study of pion structure and chiral dynamics. We review the current state of experimental study of the allowed rare decays of charged pions: (a) electronic, $pi^+ to e^+ u_e$, or $pi_{e2}$, (b) radiative, $pi^+ to e^+ u_egamma$, or $pi_{e2gamma}$, and (c) semileptonic, $pi^+to pi^0 e^+ u$, or $pi_{e3}$, as well as muon radiative decay, $mu^+to e^+ u_{text{e}}bar{ u}_{mu}gamma$. Taken together, these data present an internally consistent picture that also agrees well with Standard Model (SM) predictions. However, even following the great strides of the recent decades, experimental accuracy is lagging far behind that of the theoretical description for all above processes. We review the implications of the present state of knowledge and prospects for further improvement in the near term.
We present an overview of the capabilities that the International Linear Collider (ILC) offers for precision measurements that probe the Standard Model. First, we discuss the improvements that the ILC will make in precision electroweak observables, b oth from W boson production and radiative return to the Z at 250 GeV in the center of mass and from a dedicated GigaZ stage of running at the Z pole. We then present new results on precision measurements of fermion pair production, including the production of b and t quarks. We update the ILC projections for the determination of Higgs boson couplings through a Standard Model Effective Field Theory fit taking into account the new information on precision electroweak constraints. Finally, we review the capabilities of the ILC to measure the Higgs boson self-coupling.
The fusion cross sections of radioactive $^{134}$Te + $^{40}$Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficien cy for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn+Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of $^{130}$Te + $^{58,64}$Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.
218 - Michael A. Famiano 2019
Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا