ترغب بنشر مسار تعليمي؟ اضغط هنا

Seeking Sgluons

124   0   0.0 ( 0 )
 نشر من قبل Tim M. P. Tait
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Scalar gluons -- or sgluons -- are color octet scalars without electroweak charges. They occur in supersymmetric models of Dirac gauginos as the scalar partners of the gluino and carry Standard-Model type R charge. This allows them to interact with ordinary matter and to be produced at the LHC, singly as well as in pairs. Sgluons dominantly decay into gluons, top pairs, and a top quark plus a light quark. A pair of sgluons decaying into like-sign tops would provide a striking signature at the LHC. In our discussion of this channel we especially focus on the proper treatment of QCD jets.



قيم البحث

اقرأ أيضاً

The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or metastable particles arising in various theoretical scenarios beyond the Standard Model. Its ph ysics goals --largely complementary to the multi-purpose LHC detectors ATLAS and CMS-- are accomplished by the deployment of plastic nuclear track detectors combined with trapping volumes for capturing charged highly ionising particles and TimePix pixel devices for monitoring. This paper focuses on the status of the detectors and the prospects for LHC Run II.
Many theories beyond the Standard Model predict the existence of colored scalar states, known as sgluons, lying in the adjoint representation of the QCD gauge group. In scenarios where they are top-philic, sgluons are expected to be copiously pair-pr oduced at the LHC via strong interactions with decays into pairs of top quarks or gluons. Consequently, sgluons can be sought in multijet and multitop events at the LHC. We revisit two LHC Run I analyses in which events featuring either the same-sign dileptonic decay of a four-top-quark system or its single leptonic decay are probed. Adopting a simplified model approach, we show how this reinterpretation allows us to extract simultaneous bounds on the sgluon mass and couplings.
Large classes of new physics theories predict the existence of new scalar states, commonly dubbed sgluons, lying in the adjoint representation of the QCD gauge group. Since these new fields are expected to decay into colored Standard Model particles, and in particular into one or two top quarks, these theories predict a possible enhancement of the hadroproduction rate associated with multitop final states. We therefore investigate multitop events produced at the Large Hadron Collider, running at a center-of-mass energy of 8 TeV, and employ those events to probe the possible existence of color adjoint scalar particles. We first construct a simplified effective field theory motivated by R-symmetric supersymmetric models where sgluon fields decay dominantly into top quarks. We then use this model to analyze the sensitivity of the Large Hadron Collider in both a multilepton plus jets and a single lepton plus jets channel. After having based our event selection strategy on the possible presence of two, three and four top quarks in the final state, we find that sgluon-induced new physics contributions to multitop cross sections as low as 10-100 fb can be excluded at the 95% confidence level, assuming an integrated luminosity of 20 inverse fb. Equivalently, sgluon masses of about 500-700 GeV can be reached for several classes of benchmark scenarios.
An extension of the Standard Model by at least one extra U(1) gauge symmetry has been investigated by many authors. In this paper we explore the possibility that this extra U(1) is anomalous. One of the possible signatures of this model could be give n by the photons produced in the decays of the NLSP into the LSP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا