ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state of zero-temperature quark matter with finite quark masses

117   0   0.0 ( 0 )
 نشر من قبل Aleksi Vuorinen
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف A. Vuorinen




اسأل ChatGPT حول البحث

We outline the key elements of a recent calculation aimed at determining the equation of state of deconfined (but unpaired) quark matter at zero temperature and high density, using finite quark masses. The computation is performed in perturbation theory up to three loops, and necessitates the development and application of some novel computational tools. In this talk, we introduce the basic features of these new techniques and review the main sources of motivation for considering finite quark mass effects in perturbation theory.



قيم البحث

اقرأ أيضاً

69 - Aleksi Vuorinen 2016
In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state o f the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.
We study the interface effects in strangelets adopting mean-field approximation (MFA). Based on an equivparticle model, the linear confinement and leading-order perturbative interactions are included with density-dependent quark masses. By increasing the confinement strength, the surface tension and curvature term of strange quark matter (SQM) become larger, while the perturbative interaction does the opposite. For those parameters constrained according to the 2$M_odot$ strange star, the surface tension is $sim$2.4 MeV/fm${}^2$, while unstable SQM indicates a slightly larger surface tension. The obtained results are then compared with those predicted by the multiple reflection expansion (MRE) method. In contrast to the bag model case, it is found that MRE method overestimates the surface tension and underestimates the curvature term. To reproduce our results, the density of states in the MRE approach should be modified by proper damping factors.
We summarize the derivation of the finite temperature, finite chemical potential thermodynamic potential in the bag-model approximation to quantum chromodynamics (QCD) that includes a finite $s$-quark mass in the Feynman diagram contributions for bot h zero-order and two-loop corrections to the quark interaction. The thermodynamic potential for quarks in QCD is a desired ingredient for computations of the equation of state in the early universe, supernovae, neutron stars, and heavy-ion collisions. The 2-loop contributions are normally divergent and become even more difficult in the limit of finite quark masses and finite chemical potential. We introduce various means to interpolate between the low and high chemical potential limits. Although physically well motivated, we show that the infinite series Pade rational polynomial interpolation scheme introduces spurious poles. Nevertheless, we show that lower order interpolation schemes such as polynomial interpolation reproduce the Pade result without the presence of spurious poles. We propose that in this way one can determine the equation of state for the two-loop corrections for arbitrary chemical potential, temperature and quark mass. This provides a new realistic bag-model treatment of the QCD equation of state. We compute the QCD phase diagram with up to the two-loop corrections. We show that the two-loop corrections decrease the pressure of the quark-gluon plasma and therefore increase the critical temperature and chemical potential of the phase transition. We also show, however, that the correction for finite $s$-quark mass in the two-loop correction serves to decrease the critical temperature for the quark-hadron phase transition in the early universe.
253 - S. Ejiri , Y. Maezawa , N. Ukita 2009
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.
64 - I. Masina , C.A. Savoy 2006
The quark and charged lepton masses and the angles and phase of the CKM mixing matrix are nicely reproduced in a model which assumes SU(3)xSU(3) flavour symmetry broken by the v.e.v.s of fields in its bi-fundamental representation. The relations amon g the quark mass eigenvalues, m_u/m_c approx m_c/m_t approx m^2_d/m^2_s approx m^2_s/m^2_b approx Lambda^2_{GUT}/M^2_{Pl}, follow from the broken flavour symmetry. Large tan(beta) is required which also provides the best fits to data for the obtained textures. Lepton-quark grandunification with a field that breaks both SU(5) and the flavour group correctly extends the predictions to the charged lepton masses. The seesaw extension of the model to the neutrino sector predicts a Majorana mass matrix quadratically hierarchical as compared to the neutrino Dirac mass matrix, naturally yielding large mixings and low mass hierarchy for neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا