ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark Matter Equation of State from Perturbative QCD

70   0   0.0 ( 0 )
 نشر من قبل Aleksi Vuorinen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Aleksi Vuorinen




اسأل ChatGPT حول البحث

In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state of the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.



قيم البحث

اقرأ أيضاً

With the recent dawn of the multi-messenger astronomy era a new window has opened to explore the constituents of matter and their interactions under extreme conditions. One of the pending challenges of modern physics is to probe the microscopic equat ion of state (EoS) of cold and dense matter via macroscopic neutron star observations such as their masses and radii. Still unanswered issues concern the detailed composition of matter in the core of neutron stars at high pressure and the possible presence of e.g. hyperons or quarks. By means of a non-perturbative functional renormalization group approach the influence of quantum and density fluctuations on the quark matter EoS in $beta$-equilibrium is investigated within two- and three-flavor quark-meson model truncations and compared to results obtained with common mean-field approximations where important fluctuations are usually ignored. We find that they strongly impact the quark matter EoS.
126 - A. Vuorinen 2008
We outline the key elements of a recent calculation aimed at determining the equation of state of deconfined (but unpaired) quark matter at zero temperature and high density, using finite quark masses. The computation is performed in perturbation the ory up to three loops, and necessitates the development and application of some novel computational tools. In this talk, we introduce the basic features of these new techniques and review the main sources of motivation for considering finite quark mass effects in perturbation theory.
246 - R. Schulze , B. Kampfer 2008
A phenomenological QCD quasiparticle model provides a means to map lattice QCD results to regions relevant for a variety of heavy-ion collision experiments at larger baryon density. We report on effects of collectives modes and damping on the equation of state.
We report on lattice QCD results for the thermodynamic equation of state of quark-gluon matter obtained with Nf=2 degenerate quark flavors. For the fermion field discretization we are using the Wilson-twisted mass prescription. Simulations have been carried out at three values of the bare quark masses corresponding to pion masses of 360, 430 and 640 MeV. We highlight the importance of a good control of the lattice cutoff dependence of the trace anomaly which we have studied at several values of the inverse temperature 1/T = a Nt with a time-like lattice extent up to Nt=12. We contrast our results with those of other groups obtained for Nf=0 and Nf=2+1. At low temperature we also confront them with hadron resonance gas model predictions for the trace anomaly.
113 - L. Levkova 2009
We study the effects of the addition of the charm quark on the QCD equation of state at zero and nonzero chemical potential on lattices with $N_t=6$. Our ensembles are quenched with respect to charm and the charm quark is a valence staggered quark. A long the trajectory of constant physics the ratio $m_s/m_c$ is kept constant after tuning the charm quark mass at a lattice spacing of about 0.09 fm. We find that the charm quark has a significant contribution to the equation of state at zero chemical potential already at temperatures between about $1.2T_c$ and $2T_c$. The additional contribution at nonzero chemical potential vanishes within the current statistical uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا