ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical identification of hard X-ray source IGRJ18257-0707

67   0   0.0 ( 0 )
 نشر من قبل Rodion Burenin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the optical identification of hard X-ray source IGRJ18257-0707 trough the spectroscopic observations of its optical counterpart with RTT150 telescope. Accurate position of the X-ray source, determined using Chandra observations, allowed us to associate this source with the faint optical object (m_R=~20.4), which shows broad H_alpha emission line in its optical spectrum. Therefore we conclude that the source IGRJ18257-0707 is a type 1 Seyfert galaxy at redshift z=0.037.


قيم البحث

اقرأ أيضاً

80 - Shin Watanabe 2002
We present the first results of the Chandra and optical follow-up observations of hard X-ray sources detected in the ASCA Medium Sensitivity Survey (AMSS). Optical identifications are made for five objects. Three of them show either weak or absent op tical narrow emission lines and are at low redshift <z>~0.06. One of them is a broad line object at z=0.910 and one is a z=0.460 object with only narrow lines. All the narrow line objects show strong evidence for absorption in their X-ray spectra. Their line ratios are consistent with a Seyfert II/LINER identification as are the line widths. The three low redshift objects have the colors of normal galaxies and apparently the light is dominated by stars. This could be due to the extinction of the underlying nuclear continuum by the same matter that absorbs X-rays and/or due to the dilution of the central source by starlight. These results suggest that X-ray sources that appear as ``normal galaxies in optical and near-IR bands significantly contribute to the hard X-ray background. This population of objects has a high space density and probably dominates the entire population of active galaxies.
36 - Megan E. Eckart 2006
We present the catalog of 477 spectra from the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program, a survey designed to probe the dominant contributors to the 2-10 keV cosmic X-ray background. Our survey covers 1 deg^2 of sky to 2-10 keV fluxes of 10^-14 erg cm^-2 s^-1, and 2 deg^2 for fluxes of 3 x 10^-14 erg cm^-2 s^-1. Our spectra reach to R <24 and have produced redshifts for 438 hard X-ray sources. The vast majority of the 2-10 keV-selected sample are AGN with redshifts between 0.1 and 3. We find that few sources at z<1 have high X-ray luminosities, reflecting a dearth of high-mass, high-accretion-rate sources at low redshift, a result consistent with other recent wide-area surveys. Half of our sources show significant obscuration, with N_H>10^22 cm^-2, independent of unobscured luminosity. We classify 168 sources as emission-line galaxies; all are X-ray luminous objects with optical spectra lacking both high-ionization lines and evidence of a non-stellar continuum. The redshift distribution of these emission-line galaxies peaks at a significantly lower redshift than does that of the sources we spectroscopically identify as AGN. We conclude that few of these sources can be powered by starburst activity. Stacking spectra for a subset of these sources, we detect [Ne V] emission, a clear signature of AGN activity, confirming that the majority of these objects are Seyfert 2s in which the high-ionization lines are diluted by stellar emission. We find 33 objects lacking broad lines in their optical spectra which have quasar X-ray luminosities (Lx>10^44 erg s^-1), the largest sample of such objects identified to date. In addition, we explore 17 AGN associated with galaxy clusters and find that the cluster-member AGN sample has a lower fraction of broad-line AGN than does the background sample.
We present the results of our optical identifications of four hard X-ray sources from the Swift all-sky survey. We obtained optical spectra for each of the program objects with the 6-m BTA telescope (Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz), which allowed their nature to be established. Two sources (SWIFT J2237.2+6324} and SWIFT J2341.0+7645) are shown to belong to the class of cataclysmic variables (suspected polars or intermediate polars). The measured emission line width turns out to be fairly large (FWHM ~ 15-25 A), suggesting the presence of extended, rapidly rotating (v~400-600 km/s) accretion disks in the systems. Apart from line broadening, we have detected a change in the positions of the line centroids for SWIFT J2341.0+7645, which is most likely attributable to the orbital motion of the white dwarf in the binary system. The other two program objects (SWIFT J0003.3+2737 and SWIFT J0113.8+2515) are extragalactic in origin: the first is a Seyfert 2 galaxy and the second is a blazar at redshift z=1.594. Apart from the optical spectra, we provide the X-ray spectra for all sources in the 0.6-10 keV energy band obtained from XRT/Swift data.
78 - A.S. Oliveira 2010
Context. Close binary supersoft X-ray sources (CBSS) are binary systems that contain a white dwarf with stable nuclear burning on its surface. These sources, first discovered in the Magellanic Clouds, have high accretion rates and near-Eddington lumi nosities (10^37 - 10^38 erg/s) with high temperatures (T = 2 - 7 x 10^5 K). Aims. The total number of known objects in the MC is still small and, in our galaxy, even smaller. We observed the field of the unidentified transient supersoft X-ray source RX J0527.8-6954 in order to identify its optical counterpart. Methods. The observation was made with the IFU-GMOS on the Gemini South telescope with the purpose of identifying stars with possible He II or Balmer emission or else of observing nebular extended jets or ionization cones, features that may be expected in CBSS. Results. The X-ray source is identified with a B5e V star that is associated with subarcsecond extended Halpha emission, possibly bipolar. Conclusions. If the primary star is a white dwarf, as suggested by the supersoft X-ray spectrum, the expected orbital period exceeds 21 h; therefore, we believe that the 9.4 h period found so far is not associated to this system.
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swi ft BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray binary candidate in various Chandra and XMM studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT~ 0.2 keV) plus a hard spectrum with a power law of Gamma ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (>3 Msun) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (<3 Msun) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا