ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of the Hard X-ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

45   0   0.0 ( 0 )
 نشر من قبل Mihoko Yukita
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray binary candidate in various Chandra and XMM studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT~ 0.2 keV) plus a hard spectrum with a power law of Gamma ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (>3 Msun) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (<3 Msun) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.


قيم البحث

اقرأ أيضاً

135 - S. Pellegrini 2010
Nuclear hard X-ray luminosities (Lx,nuc) for a sample of 112 early type galaxies within a distance of 67 Mpc are used to investigate their relationship with the central galactic black hole mass Mbh, the inner galactic structure (using the parameters describing its cuspiness), the age of the stellar population in the central galactic region, the hot gas content and the core radio luminosity. Lx,nuc ranges from 10^{38} to 10^{42} erg/s, and the Eddington ratio Lx,nuc/Ledd from 10^{-9} to 10^{-4}. Lx,nuc increases on average with the galactic luminosity Lb and Mbh, with a wide variation by up to 4 orders of magnitude at any fixed Lb>6x10^9 Lb,sun or Mbh>10^7 Msun. This large range should reflect a large variation of the mass accretion rate dotMbh. On the circumnuclear scale, dotMbh at fixed Lb (or Mbh) could vary due to differences in the fuel production rate from the stellar mass return linked to the inner galactic structure; however, dotMbh should vary with cuspiness by a factor exceeding a few only in hot gas poor galaxies and for large differences in the core radius. Lx,nuc does not depend on age, but less luminous nuclei are found among galaxies with a younger stellar component. Lx,nuc is detected both in gas poor and gas rich galaxies, on average increases with the total galactic hot gas cooling rate L_{X,ISM}, but again with a large variation. The lack of a tight relationship between Lx,nuc and the circumnuclear and total gas content can be explained if the gas is heated by black hole feedback, and/or the mass effectively accreted can be largely reduced with respect to that entering the circumnuclear region. Differently from Lx,nuc, the 5 GHz VLA luminosity shows a trend with the inner galactic structure similar to that of the total soft X-ray emission; therefore they could both be produced by the hot gas.
306 - V. Beckmann 2011
The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission proces ses. Here we study the hard X-ray emission as measured by INTEGRAL in the 3-1000 keV energy range, in order to distinguish between a thermal and non-thermal inverse Compton process. The hard X-ray spectrum of Cen A shows a significant cut-off at energies Ec = 434 (+106 -73) keV with an underlying power law of photon index 1.73 +- 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kT = 206+-62 keV within the optically thin corona with Compton parameter y = 0.42 (+0.09 -0.06). The reflection component is significant at the 1.9 sigma level with R = 0.12 (+0.09 -0.10), and a reflection strength R>0.3 can be excluded on a 3 sigma level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in the range f(3-30 keV) = (1.2 - 9.2)e-10 erg/cm**2/s, NH = (7 - 16)e22 1/cm**2, and photon index 1.75 - 1.87. Extending the cut-off power law or the Comptonisation model to the gamma-ray range shows that they cannot account for the high-energy emission. On the other hand, also a broken or curved power law model can represent the data, therefore a non-thermal origin of the X-ray to GeV emission cannot be ruled out. The analysis of the SPI data provides no sign of significant emission from the radio lobes and gives a 3 sigma upper limit of f(40-1000 keV) < 0.0011 ph/cm**2/s. While gamma-rays, as detected by CGRO and Fermi, are caused by non-thermal (jet) processes, the main process in the hard X-ray emission of Cen A is still not unambiguously determined, being either dominated by thermal inverse Compton emission, or by non-thermal emission from the base of the jet.
We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which seed black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.
We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.
We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of $_{sim}^<$10$^{38}$ erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 10$^{38}$ erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا