ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Number of Rational Iterated Pre-images of the Origin Under Quadratic Dynamical Systems

127   0   0.0 ( 0 )
 نشر من قبل Xander Faber
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a quadratic endomorphism of the affine line defined over the rationals, we consider the problem of bounding the number of rational points that eventually land at the origin after iteration. In the article ``Uniform Bounds on Pre-Images Under Quadratic Dynamical Systems, by two of the present authors and five others, it was shown that the number of rational iterated pre-images of the origin is bounded as one varies the morphism in a certain one-dimensional family. Subject to the validity of the Birch and Swinnerton-Dyer conjecture and some other related conjectures for the L-series of a specific abelian variety and using a number of modern tools for locating rational points on high genus curves, we show that the maximum number of rational iterated pre-images is six. We also provide further insight into the geometry of the ``pre-image curves.



قيم البحث

اقرأ أيضاً

Let $f in Q(z)$ be a polynomial or rational function of degree 2. A special case of Morton and Silvermans Dynamical Uniform Boundedness Conjecture states that the number of rational preperiodic points of $f$ is bounded above by an absolute constant. A related conjecture of Silverman states that the canonical height $hat{h}_f(x)$ of a non-preperiodic rational point $x$ is bounded below by a uniform multiple of the height of $f$ itself. We provide support for these conjectures by computing the set of preperiodic and small height rational points for a set of degree 2 maps far beyond the range of previous searches.
192 - Yubin He , Ying Xiong 2021
For regular continued fraction, if a real number $x$ and its rational approximation $p/q$ satisfying $|x-p/q|<1/q^2$, then, after deleting the last integer of the partial quotients of $p/q$, the sequence of the remaining partial quotients is a prefix of that of $x$. In this paper, we show that the situation is completely different if we consider the Hurwitz continued fraction expansions of a complex number and its rational approximations. More specifically, we consider the set $E(psi)$ of complex numbers which are well approximated with the given bound $psi$ and have quite different Hurwitz continued fraction expansions from that of their rational approximations. The Hausdorff and packing dimensions of such set are determined. It turns out that its packing dimension is always full for any given approximation bound $psi$ and its Hausdorff dimension is equal to that of the $psi$-approximable set $W(psi)$ of complex numbers. As a consequence, we also obtain an analogue of the classical Jarnik Theorem in real case.
In this paper we show how the cross-disciplinary transfer of techniques from Dynamical Systems Theory to Number Theory can be a fruitful avenue for research. We illustrate this idea by exploring from a nonlinear and symbolic dynamics viewpoint certai n patterns emerging in some residue sequences generated from the prime number sequence. We show that the sequence formed by the residues of the primes modulo $k$ are maximally chaotic and, while lacking forbidden patterns, display a non-trivial spectrum of Renyi entropies which suggest that every block of size $m>1$, while admissible, occurs with different probability. This non-uniform distribution of blocks for $m>1$ contrasts Dirichlets theorem that guarantees equiprobability for $m=1$. We then explore in a similar fashion the sequence of prime gap residues. This sequence is again chaotic (positivity of Kolmogorov-Sinai entropy), however chaos is weaker as we find forbidden patterns for every block of size $m>1$. We relate the onset of these forbidden patterns with the divisibility properties of integers, and estimate the densities of gap block residues via Hardy-Littlewood $k$-tuple conjecture. We use this estimation to argue that the amount of admissible blocks is non-uniformly distributed, what supports the fact that the spectrum of Renyi entropies is again non-trivial in this case. We complete our analysis by applying the Chaos Game to these symbolic sequences, and comparing the IFS attractors found for the experimental sequences with appropriate null models.
201 - Simon Baker 2021
In this paper we study a family of limsup sets that are defined using iterated function systems. Our main result is an analogue of Khintchines theorem for these sets. We then apply this result to the topic of intrinsic Diophantine Approximation on se lf-similar sets. In particular, we define a new height function for an element of $mathbb{Q}^d$ contained in a self-similar set in terms of its eventually periodic representations. For limsup sets defined with respect to this height function, we obtain a detailed description of their metric properties. The results of this paper hold in arbitrary dimensions and without any separation conditions on the underlying iterated function system.
We investigate the average number of solutions of certain quadratic congruences. As an application, we establish Manins conjecture for a cubic surface whose singularity type is A_5+A_1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا