ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic Diophantine Approximation for overlapping iterated function systems

202   0   0.0 ( 0 )
 نشر من قبل Simon Baker
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Simon Baker




اسأل ChatGPT حول البحث

In this paper we study a family of limsup sets that are defined using iterated function systems. Our main result is an analogue of Khintchines theorem for these sets. We then apply this result to the topic of intrinsic Diophantine Approximation on self-similar sets. In particular, we define a new height function for an element of $mathbb{Q}^d$ contained in a self-similar set in terms of its eventually periodic representations. For limsup sets defined with respect to this height function, we obtain a detailed description of their metric properties. The results of this paper hold in arbitrary dimensions and without any separation conditions on the underlying iterated function system.



قيم البحث

اقرأ أيضاً

Recently, Adiceam, Beresnevich, Levesley, Velani and Zorin proved a quantitative version of the convergence case of the Khintchine-Groshev theorem for nondegenerate manifolds, motivated by applications to interference alignment. In the present paper, we obtain analogues of their results for affine subspaces.
We prove the convergence and divergence cases of an inhomogeneous Khintchine-Groshev type theorem for dual approximation restricted to affine subspaces in $mathbb{R} ^n$. The divergence results are proved in the more general context of Hausdorff measures.
Let $v$ be an odd real polynomial (i.e. a polynomial of the form $sum_{j=1}^ell a_jx^{2j-1}$). We utilize sets of iterated differences to establish new results about sets of the form $mathcal R(v,epsilon)={ninmathbb{N},|,|v(n)|{<epsilon}}$ where $|cd ot|$ denotes the distance to the closest integer. We then apply the new diophantine results to obtain applications to ergodic theory and combinatorics. In particular, we obtain a new characterization of weakly mixing systems as well as a new variant of Furstenberg-Sarkozy theorem.
Diophantine approximation is traditionally the study of how well real numbers are approximated by rationals. We propose a model for studying Diophantine approximation in an arbitrary totally bounded metric space where the rationals are replaced with a countable hierarchy of `well-spread points, which we refer to as abstract rationals. We prove various Jarnik-Besicovitch type dimension bounds and investigate their sharpness.
In 2004, J.C. Tong found bounds for the approximation quality of a regular continued fraction convergent of a rational number, expressed in bounds for both the previous and next approximation. We sharpen his results with a geometric method and give b oth sharp upper and lower bounds. We also calculate the asymptotic frequency that these bounds occur.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا