ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute properties of the low-mass eclipsing binary CM Draconis

91   0   0.0 ( 0 )
 نشر من قبل Juan Carlos Morales
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M1=0.2310+/-0.0009 Msun, M2=0.2141+/-0.0010 Msun, R1=0.2534+/-0.0019 Rsun, and R2=0.2396+/-0.0015 Rsun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies reported previously for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.



قيم البحث

اقرأ أيضاً

Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their l ow luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052 Msun and M2=0.6511+/-0.0052 Msun and radii of R1=0.687^{+0.017}_{-0.024} Rsun and R2=0.672^{+0.018}_{-0.022} Rsun. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2) d. The distance to the system is estimated to be d=135.2^{+7.6}_{-7.9} pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the Mbol-log Teff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.
First spectroscopic and new photometric observations of the eclipsing binary FM Leo are presented. The main aims were to determine orbital and stellar parameters of two components and their evolutionary stage. First spectroscopic observations of the system were obtained with DDO and PST spectrographs. The results of the orbital solution from radial velocity curves are combined with those derived from the light-curve analysis (ASAS-3 photometry and supplementary observations of eclipses with 1 m and 0.35 m telescopes) to derive orbital and stellar parameters. JKTEBOP, Wilson-Devinney binary modelling codes and a two-dimensional cross-correlation (TODCOR) method were applied for the analysis. We find the masses to be M_1 = 1.318 $pm$ 0.007 and M_2 = 1.287 $pm$ 0.007 M_sun, the radii to be R_1 = 1.648 $pm$ 0.043 and R_2 = 1.511 $pm$ 0.049 R_sun for primary and secondary stars, respectively. The evolutionary stage of the system is briefly discussed by comparing physical parameters with current stellar evolution models. We find the components are located at the main sequence, with an age of about 3 Gyr.
We report extensive spectroscopic and differential V-band photometric observations of the 18.4-day detached double-lined eclipsing binary LV Her (F9V), which has the highest eccentricity (e = 0.613) among the systems with well-measured properties. We determine the absolute masses and radii of the components to be M1 = 1.193 +/- 0.010 M(Sun), M2 = 1.1698 +/- 0.0081 M(Sun), R1 = 1.358 +/- 0.012 R(Sun), and R2 = 1.313 +/- 0.011 R(Sun), with fractional errors of 0.9% or better. The effective temperatures are 6060 +/- 150 K and 6030 +/- 150 K, respectively, and the overall metallicity is estimated to be [m/H] = +0.08 +/- 0.21. A comparison with current stellar evolution models for this composition indicates an excellent fit for an age between 3.8 and 4.2 Gyr, with both stars being near the middle of their main-sequence lifetimes. Full integration of the equations for tidal evolution is consistent with the high eccentricity, and suggests the stars spin axes are aligned with the orbital axis, and that their rotations should be pseudo-synchronized. The latter prediction is not quite in agreement with the measured projected rotational velocities.
We present our new photometric and spectroscopic observations of NSVS 02500276, NSVS 07453183, NSVS 11868841, NSVS 06550671 and NSVS 10653195. The first flare-like event was detected on NSVS07453183. Using the Wilson-Devinney program, the preliminary orbital solutions and starspot parameters are derived. The chromospheric activity indicators show NSVS10653195 and NSVS06550671 are active. Then, we discuss the starspot evolution on the short and long term scale. In the end, we give our future plan.
70 - G. Torres 2016
We report new spectroscopic and photometric observations of the main-sequence, detached, eccentric, double-lined eclipsing binary V541 Cyg (P = 15.34 days, e = 0.468). Using these observations together with existing measurements we determine the comp onent masses and radii to better than 1% precision: M1 = 2.335 +0.017/-0.013 MSun, M2 = 2.260 +0.016/-0.013 MSun, R1 = 1.859 +0.012/-0.009 RSun, and R2 = 1.808 +0.015/-0.013 RSun. The nearly identical B9.5 stars have estimated temperatures of 10650 +/- 200 K and 10350 +/- 200 K. A comparison of these properties with current stellar evolution models shows excellent agreement at an age of about 190 Myr and [Fe/H] approximately -0.18. Both components are found to be rotating at the pseudo-synchronous rate. The system displays a slow periastron advance that is dominated by General Relativity (GR), and has previously been claimed to be slower than predicted by theory. Our new measurement, dw/dt = 0.859 +0.042/-0.017 deg/century, has an 88% contribution from GR and agrees with the expected rate within the uncertainties. We also clarify the use of the gravity darkening coefficients in the light-curve fitting program EBOP, a version of which we use here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا