ﻻ يوجد ملخص باللغة العربية
We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametrization based on a temporal Kaluza-Klein decomposition and test the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We demonstrate how to use the effective field theory method efficiently in precision calculations, and we reproduce known results for the second Post-Newtonian order equations of motion in harmonic gauge in a straightforward manner.
Working within the post-Newtonian (PN) approximation to General Relativity, we use the effective field theory (EFT) framework to study the conservative dynamics of the two-body motion at fourth PN order, at fifth order in the Newton constant. This is
In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhars approach. Five parameterized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they
Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprec
In this paper we construct an effective field theory (EFT) that describes long wavelength gravitational radiation from compact systems. To leading order, this EFT consists of the multipole expansion, which we describe in terms of a diffeomorphism inv
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest