ﻻ يوجد ملخص باللغة العربية
In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhars approach. Five parameterized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they are identical with previous works, in which $gamma=1$, $beta=1$ and two preferred-frame parameters remain. Meanwhile, in second post-Newtonian approximation, a parameter, which represents third order nonlinearity for gravity, is zero the same as in general relativity. For an application for future deep space laser ranging missions, we reduce the metric coefficients for light propagation in a case of $N$ point masses as a simplified model of the solar system. The resulting light deflection angle in second post-Newtonian approximation poses another constraint on the Einstein-aether theory.
Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprec
We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametri
We perform numerical simulations of gravitational collapse in Einstein-aether theory. We find that under certain conditions, the collapse results in the temporary formation of a white hole horizon.
The Einstein-Aether (EA) theory belongs to a class of modified gravity theories characterized by the introduction of a time-like unit vector field, called aether. In this scenario, a preferred frame arises as a natural consequence of a broken Lorentz
How do the global properties of a Lorentzian manifold change when endowed with a vector field? This interesting question is tackled in this paper within the framework of Einstein-Aether (EA) theory which has the most general diffeomorphism-invariant