ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Uncoupling of Markov Chains for Permeable Language Distinction: A New Algorithm

29   0   0.0 ( 0 )
 نشر من قبل Pascal Vaillant
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Without prior knowledge, distinguishing different languages may be a hard task, especially when their borders are permeable. We develop an extension of spectral clustering -- a powerful unsupervised classification toolbox -- that is shown to resolve accurately the task of soft language distinction. At the heart of our approach, we replace the usual hard membership assignment of spectral clustering by a soft, probabilistic assignment, which also presents the advantage to bypass a well-known complexity bottleneck of the method. Furthermore, our approach relies on a novel, convenient construction of a Markov chain out of a corpus. Extensive experiments with a readily available system clearly display the potential of the method, which brings a visually appealing soft distinction of languages that may define altogether a whole corpus.

قيم البحث

اقرأ أيضاً

112 - Zheng Chen , Xing Fan , Yuan Ling 2020
Query rewriting (QR) is an increasingly important technique to reduce customer friction caused by errors in a spoken language understanding pipeline, where the errors originate from various sources such as speech recognition errors, language understa nding errors or entity resolution errors. In this work, we first propose a neural-retrieval based approach for query rewriting. Then, inspired by the wide success of pre-trained contextual language embeddings, and also as a way to compensate for insufficient QR training data, we propose a language-modeling (LM) based approach to pre-train query embeddings on historical user conversation data with a voice assistant. In addition, we propose to use the NLU hypotheses generated by the language understanding system to augment the pre-training. Our experiments show pre-training provides rich prior information and help the QR task achieve strong performance. We also show joint pre-training with NLU hypotheses has further benefit. Finally, after pre-training, we find a small set of rewrite pairs is enough to fine-tune the QR model to outperform a strong baseline by full training on all QR training data.
In the era of big data, the advancement, improvement, and application of algorithms in academic research have played an important role in promoting the development of different disciplines. Academic papers in various disciplines, especially computer science, contain a large number of algorithms. Identifying the algorithms from the full-text content of papers can determine popular or classical algorithms in a specific field and help scholars gain a comprehensive understanding of the algorithms and even the field. To this end, this article takes the field of natural language processing (NLP) as an example and identifies algorithms from academic papers in the field. A dictionary of algorithms is constructed by manually annotating the contents of papers, and sentences containing algorithms in the dictionary are extracted through dictionary-based matching. The number of articles mentioning an algorithm is used as an indicator to analyze the influence of that algorithm. Our results reveal the algorithm with the highest influence in NLP papers and show that classification algorithms represent the largest proportion among the high-impact algorithms. In addition, the evolution of the influence of algorithms reflects the changes in research tasks and topics in the field, and the changes in the influence of different algorithms show different trends. As a preliminary exploration, this paper conducts an analysis of the impact of algorithms mentioned in the academic text, and the results can be used as training data for the automatic extraction of large-scale algorithms in the future. The methodology in this paper is domain-independent and can be applied to other domains.
Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge existing methods by hierarchical indexing, as well as implicit relationships o f calculation and semantics. This work presents HiTab, a free and open dataset to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports (analyses) and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) both target sentences for NLG and questions for QA are revised from original, meaningful, and diverse descriptive sentences authored by analysts and professions of reports. (3) to reveal complex numerical reasoning in statistical analyses, we provide fine-grained annotations of entity and quantity alignment. HiTab provides 10,686 QA pairs and descriptive sentences with well-annotated quantity and entity alignment on 3,597 tables with broad coverage of table hierarchies and numerical reasoning types. Targeting hierarchical structure, we devise a novel hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting complex numerical reasoning, we propose partially supervised training given annotations of entity and quantity alignment, which helps models to largely reduce spurious predictions in the QA task. In the NLG task, we find that entity and quantity alignment also helps NLG models to generate better results in a conditional generation setting. Experiment results of state-of-the-art baselines suggest that this dataset presents a strong challenge and a valuable benchmark for future research.
This paper presents a portable phenotyping system that is capable of integrating both rule-based and statistical machine learning based approaches. Our system utilizes UMLS to extract clinically relevant features from the unstructured text and then f acilitates portability across different institutions and data systems by incorporating OHDSIs OMOP Common Data Model (CDM) to standardize necessary data elements. Our system can also store the key components of rule-based systems (e.g., regular expression matches) in the format of OMOP CDM, thus enabling the reuse, adaptation and extension of many existing rule-based clinical NLP systems. We experimented with our system on the corpus from i2b2s Obesity Challenge as a pilot study. Our system facilitates portable phenotyping of obesity and its 15 comorbidities based on the unstructured patient discharge summaries, while achieving a performance that often ranked among the top 10 of the challenge participants. This standardization enables a consistent application of numerous rule-based and machine learning based classification techniques downstream.
This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches ty pically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا