ترغب بنشر مسار تعليمي؟ اضغط هنا

Astronomical site selection: On the use of satellite data for aerosol content monitoring

178   0   0.0 ( 0 )
 نشر من قبل Antonia M. Varela
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.M. Varela




اسأل ChatGPT حول البحث

The main goal of this work is the analysis of new approaches to the study of the properties of astronomical sites. In particular, satellite data measuring aerosols have recently been proposed as a useful technique for site characterization and searching for new sites to host future very large telescopes. Nevertheless, these data need to be critically considered and interpreted in accordance with the spatial resolution and spectroscopic channels used. In this paper we have explored and retrieved measurements from satellites with high spatial and temporal resolutions and concentrated on channels of astronomical interest. The selected datasets are OMI on board the NASA Aura satellite and MODIS on board the NASA Terra and Aqua satellites. A comparison of remote sensing and in situ techniques is discussed. As a result, we find that aerosol data provided by satellites up to now are not reliable enough for aerosol site characterization, and in situ data are required.

قيم البحث

اقرأ أيضاً

We installed two sets of Astronomical Site Monitoring System(ASMS) at Lijiang Observatory(GMG), for the running of the 2.4-meter Lijiang optical telescope(LJT) and the 1.6-meter Multi-channel Photometric Survey Telescope (Mephisto). The Mephistro is under construction. ASMS has been running on robotic mode since 2017. The core instruments: Cloud Sensor, All-Sky Camera and Autonomous-DIMM that are developed by our group, together with the commercial Meteorological Station and Sky Quality Meter, are combined into the astronomical optical site monitoring system. The new Cloud Sensors Cloud-Clear Relationship is presented for the first time, which is used to calculate the All-Sky cloud cover. We designed the Autonomous-DIMM located on a tower, with the same height as LJT. The seeing data have been observed for a full year. ASMSs data for the year 2019 are also analysed in detail, which are valuable to observers.
118 - Yi Hu , Keliang Hu , Zhaohui Shang 2018
We present an analysis of meteorological data from the second generation of the Kunlun Automated Weather Station (KLAWS-2G) at Dome A, Antarctica during 2015 and 2016. We find that a strong temperature inversion exists for all the elevations up to 14 m that KLAWS-2G can reach, and lasts for more than 10 hours for 50% or more of the time when temperature inversion occurs. The average wind speeds at 4 m elevation are 4.2 m/s and 3.8 m/s during 2015 and 2016, respectively. The strong temperature inversion and moderate wind speed lead to a shallow turbulent boundary layer height at Dome A. By analyzing the temperature and wind shear profiles, we note telescopes should be elevated by at least 8 m above the ice. We also find that the duration of temperature
A global site selection for astronomy was performed with 1 km spatial resolution ($sim$ 1 Giga pixel in size) using long term and up-to-date datasets to classify the entire terrestrial surface on the Earth. Satellite instruments are used to get the f ollowing datasets of Geographical Information System (GIS) layers: Cloud Coverage, Digital Elevation Model, Artificial Light, Precipitable Water Vapor, Aerosol Optical Depth, Wind Speed and Land Use -- Land Cover. A Multi Criteria Decision Analysis (MCDA) technique is applied to these datasets creating four different series where each layer will have a specific weight. We introduce for the first time a ``Suitability Index for Astronomical Sites namely, SIAS. This index can be used to find suitable locations and to compare different sites or observatories. Mid-western Andes in South America and Tibetan Plateau in west China were found to be the best in all SIAS Series. Considering all the series, less than 3 % of all terrestrial surfaces are found to be the best regions to establish an astronomical observatory. In addition to this, only approximately 10 % of all current observatories are located in good locations in all SIAS series. Amateurs, institutions or countries aiming to construct an observatory could create a short-list of potential site locations using layout of SIAS values for each country without spending time and budget.The outcomes and datasets of this study has been made available through a web site, namely ``Astro GIS Database on texttt{url{www.astrogis.org}}.
As connected sensors continue to evolve, interest in low-voltage monitoring solutions is increasing. This also applies in the area of switchgear monitoring, where the detection of switch actions, their differentiation and aging are of fundamental int erest. In particular, the universal applicability for various types of construction plays a major role. Methods in which design-specific features are learned in an offline training are therefore less suitable for assessing the condition of switchgears. A new computational efficient method for intelligent online feature selection is presented, which can be used to train a model for the addressed use cases on-site. Process- and design-specific features can be learned locally (e.g. on a sensor system) without the need of prior offline training. The proposed method is evaluated on four datasets of switchgear measurements, which were recorded using microelectromechanical system (MEMS) based sensors (acoustic and vibration). Furthermore, we show that the features selected by our method can be used to track changes in switching processes due to aging effects.
This paper explores the topic of preferential sampling, specifically situations where monitoring sites in environmental networks are preferentially located by the designers. This means the data arising from such networks may not accurately characteri ze the spatio-temporal field they intend to monitor. Approaches that have been developed to mitigate the effects of preferential sampling in various contexts are reviewed and, building on these approaches, a general framework for dealing with the effects of preferential sampling in environmental monitoring is proposed. Strategies for implementation are proposed, leading to a method for improving the accuracy of official statistics used to report trends and inform regulatory policy. An essential feature of the method is its capacity to learn the preferential selection process over time and hence to reduce bias in these statistics. Simulation studies suggest dramatic reductions in bias are possible. A case study demonstrates use of the method in assessing the levels of air pollution due to black smoke in the UK over an extended period (1970-1996). In particular, dramatic reductions in the estimates of the number of sites out of compliance are observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا