ترغب بنشر مسار تعليمي؟ اضغط هنا

Freezing a Coherent Field Growth in a Cavity by Quantum Zeno Effect

108   0   0.0 ( 0 )
 نشر من قبل Michel Brune
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Bernu




اسأل ChatGPT حول البحث

We have frozen the coherent evolution of a field in a cavity by repeated measurements of its photon number. We use circular Rydberg atoms dispersively coupled to the cavity mode for an absorption-free photon counting. These measurements inhibit the growth of a Field injected in the cavity by a classical source. This manifestation of the Quantum Zeno effect illustrates the back action of the photon number determination onto the Field phase. The residual growth of the Field can be seen as a random walk of its amplitude in the two-dimensional phase space. This experiment sheds light onto the measurement process and opens perspectives for active quantum feedback.



قيم البحث

اقرأ أيضاً

We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evol ution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal.
We discuss an implementation of Quantum Zeno Dynamics in a Cavity Quantum Electrodynamics experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field evolution in chosen subspaces of the total Hilbert sp ace. This procedure leads to promising methods for tailoring non-classical states. We propose to realize `tweezers picking a coherent field at a point in phase space and moving it towards an arbitrary final position without affecting other non-overlapping coherent components. These effects could be observed with a state-of-the-art apparatus.
We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged quantum dot in a micropillar cavity. The electron spin in this system entangles with the polarization of the transmitted photons, and their continuo us detection leads to the slowing of the electron spin precession in external magnetic field and induces the spin relaxation. We obtain a microscopic expression for the spin measurement rate and calculate the second and fourth order correlation functions of the spin noise, which evidence the change of the spin statistics due to the quantum Zeno effect. We demonstrate, that the quantum limit for the spin measurement can be reached for any probe frequency using the homodyne nondemolition spin measurement, which maximizes the rate of the quantum information gain.
The protection of the coherence of open quantum systems against the influence of their environment is a very topical issue. A scheme is proposed here which protects a general quantum system from the action of a set of arbitrary uncontrolled unitary e volutions. This method draws its inspiration from ideas of standard error-correction (ancilla adding, coding and decoding) and the Quantum Zeno Effect. A pedagogical demonstration of our method on a simple atomic system, namely a Rubidium isotope, is proposed.
485 - H. Zheng , S. Y. Zhu 2008
The effect of the anti-rotating terms on the short-time evolution and the quantum Zeno (QZE) and anti-Zeno (AQZE) effects is studied for a two-level system coupled to a bosonic environment. A unitary transformation and perturbation theory are used to obtain the electron self-energy, energy shift and the enhanced QZE or the AQZE, simultaneously. The calculated Zeno time depends on the atomic transition frequency sensitively. When the atomic transition frequency is smaller than the central frequency of the spectrum of boson environment, the Zeno time is prolonged and the anti-rotating terms enhance the QZE; when it is larger than that the Zeno time is reduced and the anti-rotating terms enhance the AQZE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا