ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of shielded microwave probes using bulk dielectrics

285   0   0.0 ( 0 )
 نشر من قبل Keji Lai
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stripline-type near-field microwave probe is microfabricated for microwave impedance microscopy. Unlike the poorly shielded coplanar probe that senses the sample tens of microns away, the stripline structure removes the stray fields from the cantilever body and localizes the interaction only around the focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip toward bulk dielectrics can be quantitatively simulated and fitted to the finite-element analysis result. The peak signal of the approaching curve is a measure of the sample dielectric constant and can be used to study unknown bulk materials.

قيم البحث

اقرأ أيضاً

Dielectric measurements on insulating materials at cryogenic temperatures can be challenging, depending on the frequency and temperature ranges of interest. We present a technique to study the dielectric properties of bulk dielectrics at GHz frequenc ies. A superconducting coplanar Nb resonator is deposited directly on the material of interest, and this resonator is then probed in distant-flip-chip geometry with a microwave feedline on a separate chip. Evaluating several harmonics of the resonator gives access to various probing frequencies, in the present studies up to 20 GHz. We demonstrate the technique on three different materials (MgO, LaAlO3, and TiO2), at temperatures between 1.4 K and 7 K.
Specific contact resistivity measurements have conventionally been heavy in both fabrication and simulation/calculation in order to account for complicated geometries and other effects such as parasitic resistance. We propose a simpler geometry to de liver current, and the use of a scanning voltage probe to sense the potential variation along the sample surface, from which the specific contact resistivity can be straightforwardly deduced. We demonstrate an analytical example in the case where both materials are thin films. Experimental data with a scanning Kelvin probe measurement on graphene from the literature corroborates our model calculation.
107 - K. Lai , M.B. Ji , N. Leindecker 2007
We present the design and experimental results of a near-field scanning microwave microscope (NSMM) working at a frequency of 1GHz. Our microscope is unique in that the sensing probe is separated from the excitation electrode to significantly suppres s the common-mode signal. Coplanar waveguides were patterned onto a silicon nitride cantilever interchangeable with atomic force microscope (AFM) tips, which are robust for high speed scanning. In the contact mode that we are currently using, the numerical analysis shows that contrast comes from both the variation in local dielectric properties and the sample topography. Our microscope demonstrates the ability to achieve high resolution microwave images on buried structures, as well as nano-particles, nano-wires, and biological samples.
We report a study of the temperature dependence of the surface resistance RS in the graphite intercalated compound (GIC) CaC6, where superconductivity at 11.5 K was recently discovered. Experiments are carried out using a copper dielectrically loaded cavity operating at 7 GHz in a hot finger configuration. Bulk CaC6 samples have been synthesized from highly oriented pyrolytic graphite. Microwave data allows to extract unique information on the quasiparticle density and on the nature of pairing in superconductors. The analysis of RS(T) confirms our recent experimental findings that CaC6 behaves as a weakly-coupled, fully gapped, superconductor.
The recent quest for improved functional materials like high permittivity dielectrics and/or multiferroics has triggered an intense wave of research. Many materials have been checked for their dielectric permittivity or their polarization state. In t his report, we call for caution when samples are simultaneously displaying insulating behavior and defect-related conductivity. Many oxides containing mixed valent cations or oxygen vacancies fall in this category. In such cases, most of standard experiments may result in effective high dielectric permittivity which cannot be related to ferroelectric polarization. Here we list few examples of possible discrepancies between measured parameters and their expected microscopic origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا