ترغب بنشر مسار تعليمي؟ اضغط هنا

Secondary Fe-peak nuclei in the Tycho Supernova Remnant: A Promising Tracer of Type Ia Progenitor Metallicity

492   0   0.0 ( 0 )
 نشر من قبل Carles Badenes
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of two Galactic supernova remnants: the well known Tycho SNR and W49B, an older object that has been tentatively classified as Type Ia. The fluxes of the Mn and Cr Ka lines in the X-ray spectra of these SNRs observed by the Suzaku and ASCA satellites suggest progenitors of supersolar metallicity for both objects.



قيم البحث

اقرأ أيضاً

The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemi cal yields and line centroid energies consistent with a Type Ia SN. In this paper, we analyze the full X-ray spectrum from 0.7-10 keV of 3C 397 observed with Suzaku and compare the line centroid energies, fluxes, and elemental abundances of intermediate-mass and heavy metals (Mg to Ni) to Type Ia and CC hydrodynamical model predictions. Based on the results, we conclude that 3C 397 likely arises from an energetic Type Ia explosion in a high-density ambient medium, and we show that the progenitor was a near Chandrasekhar mass white dwarf.
We report, for the first time, the detection of the Mn-K$alpha$ line in the Type IIb supernova (SN IIb) remnant, Cassiopeia A. Manganese ($^{55}$Mn after decay of $^{55}$Co), a neutron-rich element, together with chromium ($^{52}$Cr after decay of $^ {52}$Fe), is mainly synthesized at the explosive incomplete Si burning regime. Therefore, the Mn/Cr mass ratio with its neutron excess reflects the neutronization at the relevant burning layer during the explosion. Chandras archival X-ray data of Cassiopeia A indicate a low Mn/Cr mass ratio with values in the range 0.10--0.66, which, when compared to one-dimensional SN explosion models, requires that the electron fraction be 0.4990 $lesssim Y_{rm e} lesssim$ 0.5 at the incomplete Si burning layer. An explosion model assuming a solar-metallicity progenitor with a typical explosion energy ($1 times 10^{51}$ erg) fails to reproduce such a high electron fraction. In such models, the explosive Si-burning regime extends only to the Si/O layer established during the progenitors hydrostatic evolution; the $Y_e$ in the Si/O layer is lower than the value required by our observational constraints. We can satisfy the observed Mn/Cr mass ratio if the explosive Si-burning regime were to extend into the O/Ne hydrostatic layer, which has a higher $Y_{rm e}$. This would require an energetic ($> 2 times 10^{51}$ erg) and/or asymmetric explosion of a sub-solar metallicity progenitor ($Z lesssim 0.5Z_{odot}$) for Cassiopeia A. The low initial metallicity can be used to rule out a single-star progenitor, leaving the possibility of a binary progenitor with a compact companion (white dwarf, neutron star or black hole). We discuss the detectability of X-rays from Bondi accretion onto such a compact companion around the explosion site. We also discuss other possible mass-loss scenarios for the progenitor system of Cassiopeia A.
In Type Ia Supernovae (sneia), the relative abundances of chemical elements are affected by the neutron excess in the composition of the progenitor white dwarf. Since these products leave signatures in the spectra near maximum light, spectral feature s may be used to constrain the composition of the progenitor. We calculate the nucleosynthetic yields for three snia simulations, assuming single degenerate, Chandrasekhar mass progenitors, for a wide range of progenitor metallicities, and calculate synthetic light curves and spectra to explore correlations between progenitor metallicity and the strength of spectral features. We use two 2D simulations of the deflagration-detonation-transition scenario with different $^{56}$Ni yields and the W7 simulation to control for differences between explosion models and total yields. While the overall yields of intermediate mass elements (16 $<$ A $leq$ 40) differ between the three cases, trends in the yields are similar. With increasing metallicity, $^{28}$Si yields remain nearly constant, $^{40}$Ca yields decline, and Ti and $^{54}$Fe yields increase. In the synthetic spectra, we identify two features at 30 days post explosion that appear to deepen with progenitor metallicity: a Ti feature around 4200,AA and a Fe feature around 5200,AA@. In all three simulations, their pseudo equivalent widths show a systematic trend with progenitor metallicity. This suggests that these two features may allow differentiation among progenitor metallicities of observed sneia and potentially help reduce the intrinsic Hubble scatter.
We derive the mass of the white dwarf in the eclipsing recurrent nova U Sco from the radial velocity semi-amplitudes of the primary and secondary stars. Our results give a high white dwarf mass of M_1 = 1.55 pm 0.24M_odot, consistent with the thermon uclear runaway model of recurrent nova outbursts. We confirm that U Sco is the best Type Ia supernova progenitor known, and predict that the time to explosion is within ~700,000 years.
The ultimate understanding of Type Ia Supernovae diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor syst em metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young Supernova remnants, we derive that the metallicity of the progenitors should be in the range Z=0.030-0.032, close to the average metallicity value of the thin disk of the Milky Way. As the amount of ${^{56}}$Ni produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا