ترغب بنشر مسار تعليمي؟ اضغط هنا

On Measuring the Metallicity of a Type Ia Supernovas Progenitor

62   0   0.0 ( 0 )
 نشر من قبل Broxton Miles
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Type Ia Supernovae (sneia), the relative abundances of chemical elements are affected by the neutron excess in the composition of the progenitor white dwarf. Since these products leave signatures in the spectra near maximum light, spectral features may be used to constrain the composition of the progenitor. We calculate the nucleosynthetic yields for three snia simulations, assuming single degenerate, Chandrasekhar mass progenitors, for a wide range of progenitor metallicities, and calculate synthetic light curves and spectra to explore correlations between progenitor metallicity and the strength of spectral features. We use two 2D simulations of the deflagration-detonation-transition scenario with different $^{56}$Ni yields and the W7 simulation to control for differences between explosion models and total yields. While the overall yields of intermediate mass elements (16 $<$ A $leq$ 40) differ between the three cases, trends in the yields are similar. With increasing metallicity, $^{28}$Si yields remain nearly constant, $^{40}$Ca yields decline, and Ti and $^{54}$Fe yields increase. In the synthetic spectra, we identify two features at 30 days post explosion that appear to deepen with progenitor metallicity: a Ti feature around 4200,AA and a Fe feature around 5200,AA@. In all three simulations, their pseudo equivalent widths show a systematic trend with progenitor metallicity. This suggests that these two features may allow differentiation among progenitor metallicities of observed sneia and potentially help reduce the intrinsic Hubble scatter.

قيم البحث

اقرأ أيضاً

The ultimate understanding of Type Ia Supernovae diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor syst em metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young Supernova remnants, we derive that the metallicity of the progenitors should be in the range Z=0.030-0.032, close to the average metallicity value of the thin disk of the Milky Way. As the amount of ${^{56}}$Ni produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of a SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (lambda<2900 A) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (~2 sigma) between SN Ia UV flux and host-galaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (lambda<2700 A), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parameterised by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majority of our sample members are extremely nearby (redshift z<0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology.
We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given o ur photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 solar radii from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.
123 - J. Polshaw 2015
We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to ion{He}{ii}, ion{N}{iii}, and ion{C}{iii}, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SNe~IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe~IIP of a given progenitor mass would imply a progenitor star metallicity as low as 0.1,Z$_{odot}$. LSQ13fn highlights the diversity of SNe~II and the many competing physical effects that come into play towards the final stages of massive star evolution immediately preceding core-collapse.
As the closest Type Ia supernova in decades, SN 2014J provides a unique opportunity for detailed investigation into observational signatures of the progenitor system and explosion mechanism in addition to burning product distribution. We present a la te-time near-infrared spectral series from Gemini-N at $307-466$ days after the explosion. Following the $H$-band evolution probes the distribution of radioactive iron group elements, the extent of mixing, and presence of magnetic fields in the expanding ejecta. Comparing the isolated $1.6440$ $mu$m [Fe II] emission line with synthetic models shows consistency with a Chandrasekhar-mass white dwarf of $rho_c=0.7times10^9$ g cm${}^{-3}$ undergoing a delayed detonation. The ratio of the flux in the neighboring $1.54$ $mu$m emission feature to the flux in the $1.6440$ $mu$m feature shows evidence of some limited mixing of stable and radioactive iron group elements in the central regions. Additionally, the evolution of the $1.6440$ $mu$m line shows an intriguing asymmetry. When measuring line-width of this feature, the data show an increase in line width not seen in the evolution of the synthetic spectra, corresponding to $approx1{,}000$ km s${}^{-1}$, which could be caused by a localized transition to detonation producing asymmetric ionization in the ejecta. Using the difference in width between the different epochs, an asymmetric component in the central regions, corresponding to approximately the inner $2times10^{-4}$ of white dwarf mass suggests an off-center ignition of the initial explosion and hence of the kinematic center from the chemical center. Several additional models investigated, including a He detonation and a merger, have difficulty reproducing the features seen these spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا