ترغب بنشر مسار تعليمي؟ اضغط هنا

Manual for the Flexible DM-NRG code

98   0   0.0 ( 0 )
 نشر من قبل Pascu Catalin Moca
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum impurity models describe interactions between some local degrees of freedom and a continuum of non-interacting fermionic or bosonic states. The investigation of quantum impurity models is a starting point towards the understanding of more complex strongly correlated systems, but quantum impurity models also provide the description of various correlated mesoscopic structures, biological and chemical processes, atomic physics and describe phenomena such as dissipation or dephasing. Prototypes of these models are the Anderson impurity model, or the single- and multi-channel Kondo models. The numerical renormalization group method (NRG) proposed by Wilson in mid 70s has been used in its original form for a longtime as one of the most accurate and powerful methods to deal with quatum impurity problems. Recently, a number of new developments took place: First, a spectral sum-conserving density matrix NRG approach (DM-NRG) has been developed, which has also been generalized for non-Abelian symmetries. In this manual we introduce some of the basic concepts of the NRG method and present recently developed Flexible DM-NRG code. This code uses user-defined non-Abelian symmetries dynamically, computes spectral functions, expectation values of local operators for user-defined impurity models. The code can also use a uniform density of states as well as a user-defined density of states. The current version of the code assumes fermionic baths and it uses any number of U(1), SU(2) charge SU(2) or Z(2) symmetries. The Flexible DM-NRG code can be downloaded from http://www.phy.bme.hu/~dmnrg



قيم البحث

اقرأ أيضاً

A double quantum dot device, connected to two channels that only see each other through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. By using a two-impurity Anderson model, and parameter values obtained from experiment [S. Amasha {it et al.}, Phys. Rev. Lett. {bf 110}, 046604 (2013)], it is shown that, by applying a moderate magnetic field, and adjusting the gate potential of each quantum dot, opposing spin polarizations are created in each channel. Furthermore, through a well defined change in the gate potentials, the polarizations can be reversed. This polarization effect is clearly associated to a spin-orbital Kondo state having a Kondo peak that originates from spatially separated parts of the device. This fact opens the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.
With this report we provide users of an easy manual to facilitate the proper download and use of a sophisticated, high precision, few-body code originally developed by S. Mikkola, and later largely improved and implemented to treat a variety of cases . The code download can be done via the link https://drive.google.com/file/d/16FkVVR4Tk8eKhKMju2vQ9rlWI4Mpv01W/view The use of the code is free upon proper citation. The work is in progress and users are invited to help the authors to improve both the code and the user handbook.
52 - J.Ranft 1999
DPMJET samples hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at high energies. The two-component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary interaction. Particle production is realized by the fragmentation of colorless parton-parton chains constructed from the quark content of the interacting hadrons. DPMJET-II.5 includes the cascading of secondaries within the target as well as projectile nuclei which is suppressed by the formation time concept. The excitation energy of the remaining target and projectile nuclei is calculated and using this nuclear evaporation is included into the model. It is possible to use the model up to primary energies of 10${}^{21}$ eV (per nucleon) in the lab. frame. DPMJET can also be applied to neutrino nucleus collisions. It extends the neutrino-nucleon models qel (quasi elastic neutrino interactions) and lepto (deep inelastic neutrino nucleon collisions) to neutrino collisions on nuclear targets.
This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focu sing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-collapse supernova problem for which Fornax is primarily intended, we present here classical and rigorous demonstrations of code performance relevant to a broad range of multi-dimensional hydrodynamic and multi-group radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1 closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this end, we first describe the philosophy, algorithms, and methodologies of Fornax and then perform numerous stringent code tests, that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling well above 100k MPI tasks.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function to each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا