ترغب بنشر مسار تعليمي؟ اضغط هنا

Sflavor mixing map viewed from a high scale in supersymmetric SU(5)

240   0   0.0 ( 0 )
 نشر من قبل Jae-hyeon Park
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Pyungwon Ko




اسأل ChatGPT حول البحث

We study flavor violation in a supersymmetric SU(5) grand unification scenario in a model-independent way employing mass insertions. We examine how the quark and the lepton sector observables restrict sfermion mixings. With a low soft scalar mass, a lepton flavor violating process provides a stringent constraint on the flavor structure of right-handed down-type squarks. In particular, mu -> e gamma turns out to be highly susceptible to the 1-3 and 2-3 mixings thereof, due to the radiative correction from the top Yukawa coupling to the scalar mass terms of 10. With a higher scalar mass around the optimal value, in contrast, the quark sector inputs such as B-meson mixings and hadron electric dipole moment, essentially determine the room for sfermion mixing. We also discuss the recent deviation observed in B_s mixing phase, projected sensitivity of forthcoming experiments, and ways to maintain the power of leptonic restrictions even after incorporating a solution to fix the incorrect quark-lepton mass relations.

قيم البحث

اقرأ أيضاً

275 - Jae-hyeon Park 2008
We inspect consequences of the latest B_s mixing phase measurements on lepton flavor violation in a supersymmetric SU(5) theory. The O(1) phase, preferring a non-vanishing squark mixing, generically implies tau -> (e + mu) gamma and mu -> e gamma. De pending on the gaugino and the scalar mass parameters as well as tan beta, the rates turn out to be detectable or even already excessive, if the RR mass insertion of down-type squarks is nonzero. We find that it becomes easy to reconcile B_s mixing phase with lepton flavor violation given: gaugino to scalar squared mass ratio around 1/12, both LL and RR insertions with decent sizes, and low tan beta.
We study the feasibility of realizing supersymmetric new inflation model, introduced by Senoguz and Shafi in [1], for $SU(5)$ and flipped $SU(5)$ models of grand unified theories (GUTs). This realization requires an additional $U(1)_R times Z_{n}$ sy mmetry for its successful implementation. The standard model (SM) gauge singlet scalar components of $24_H$ and $10_H$ GUT Higgs superfields are respectively employed to realize successful inflation in $SU(5)$ and flipped $SU(5)$ models. The predictions of the various inflationary observables lie within the recent Planck bounds on the scalar spectral index, $n_s$, for $n geq 5$ in $SU(5)$ model and for $n geq 6$ in flipped $SU(5)$ model. In particular, the tensor to scalar ratio $r$ and the running of spectral index $d n_s/ dln k$ are negligibly small and lie in the range, $10^{-12} lesssim r lesssim 10^{-8}$ and $10^{-9} lesssim dn_s/dln k lesssim 10^{-3}$, for realistic values of $n$. In numerical estimation of the various predictions, we fix the gauge symmetry breaking scale, $M$, around $2 times 10^{16}$ GeV. The issue of gauge coupling unification in $R$-symmetric $SU(5)$ is evaded by adding vectorlike families with mass splitting within their multiplets. The dilution of monopoles beyond the observable limit is naturally achieved in the breaking of $SU(5)$ gauge symmetry during inflation. A realistic scenario of reheating with non-thermal leptogenesis is employed for both models. The predicted range of reheat temperature within Planck bounds, $3 times 10^{7}text{ GeV }lesssim T_r lesssim 2 times 10^{9}$ GeV, is safe from the gravitino problem for the gravitino mass, $m_{3/2} gtrsim 10$ TeV. Finally, the $U(1)_R times Z_{n}$ symmetry is also observed to play a crucial role in suppressing the various fast proton decay operators.
A scheme of simplified smooth hybrid inflation is realized in the framework of supersymmetric $SU(5)$. The smooth model of hybrid inflation provides a natural solution to the monopole problem that appears in the breaking of $SU(5)$ gauge symmetry. Th e supergravity corrections with nonminimal Kahler potential are shown to play important role in realizing inflation with a red-tilted scalar spectral index $n_s <1$, within Plancks latest bounds. As compared to shifted model of hybrid inflation, relatively large values of the tensor-to-scalar ratio $r lesssim 0.01$ are achieved here, with nonminimal couplings $-0.05 lesssim kappa_S lesssim 0.01$ and $-1 lesssim kappa_{SS} lesssim 1$ and the gauge symmetry-breaking scale $M simeq (2.0 - 16.7) times 10^{16}$ GeV.
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of t he models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $mathbf{5}$ and $mathbf{bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $tan beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel ${tilde u_R}/{tilde c_R} - tilde{chi}^0_1$ coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ${tilde u_tau}$ coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
263 - Javier Ferrandis 2002
I examine the possibility that the third generation fermion masses are determined by an exact fixed point of the minimal supersymmetric SU(5) model. When one-loop supersymmetric thresholds are included, this unified fixed point successfully predicts the top quark mass, 175 +(-) 2 GeV, as well as the weak mixing angle. The bottom quark mass prediction is sensitive to the supersymmetric thresholds; it approaches the measured value for mu <0 and very large unified gaugino mass. The experimental measurement of the tau lepton mass determines tan(beta), and the strong gauge coupling and fine structure constant fix the unification scale and the unified gauge coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا