ترغب بنشر مسار تعليمي؟ اضغط هنا

New Inflation in Supersymmetric SU(5) and Flipped SU(5) GUT Models

112   0   0.0 ( 0 )
 نشر من قبل Mansoor Ur Rehman
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the feasibility of realizing supersymmetric new inflation model, introduced by Senoguz and Shafi in [1], for $SU(5)$ and flipped $SU(5)$ models of grand unified theories (GUTs). This realization requires an additional $U(1)_R times Z_{n}$ symmetry for its successful implementation. The standard model (SM) gauge singlet scalar components of $24_H$ and $10_H$ GUT Higgs superfields are respectively employed to realize successful inflation in $SU(5)$ and flipped $SU(5)$ models. The predictions of the various inflationary observables lie within the recent Planck bounds on the scalar spectral index, $n_s$, for $n geq 5$ in $SU(5)$ model and for $n geq 6$ in flipped $SU(5)$ model. In particular, the tensor to scalar ratio $r$ and the running of spectral index $d n_s/ dln k$ are negligibly small and lie in the range, $10^{-12} lesssim r lesssim 10^{-8}$ and $10^{-9} lesssim dn_s/dln k lesssim 10^{-3}$, for realistic values of $n$. In numerical estimation of the various predictions, we fix the gauge symmetry breaking scale, $M$, around $2 times 10^{16}$ GeV. The issue of gauge coupling unification in $R$-symmetric $SU(5)$ is evaded by adding vectorlike families with mass splitting within their multiplets. The dilution of monopoles beyond the observable limit is naturally achieved in the breaking of $SU(5)$ gauge symmetry during inflation. A realistic scenario of reheating with non-thermal leptogenesis is employed for both models. The predicted range of reheat temperature within Planck bounds, $3 times 10^{7}text{ GeV }lesssim T_r lesssim 2 times 10^{9}$ GeV, is safe from the gravitino problem for the gravitino mass, $m_{3/2} gtrsim 10$ TeV. Finally, the $U(1)_R times Z_{n}$ symmetry is also observed to play a crucial role in suppressing the various fast proton decay operators.



قيم البحث

اقرأ أيضاً

A scheme of simplified smooth hybrid inflation is realized in the framework of supersymmetric $SU(5)$. The smooth model of hybrid inflation provides a natural solution to the monopole problem that appears in the breaking of $SU(5)$ gauge symmetry. Th e supergravity corrections with nonminimal Kahler potential are shown to play important role in realizing inflation with a red-tilted scalar spectral index $n_s <1$, within Plancks latest bounds. As compared to shifted model of hybrid inflation, relatively large values of the tensor-to-scalar ratio $r lesssim 0.01$ are achieved here, with nonminimal couplings $-0.05 lesssim kappa_S lesssim 0.01$ and $-1 lesssim kappa_{SS} lesssim 1$ and the gauge symmetry-breaking scale $M simeq (2.0 - 16.7) times 10^{16}$ GeV.
We explore proton decay in a class of realistic supersymmetric flipped $SU(5)$ models supplemented by a $U(1)_R$ symmetry which plays an essential role in implementing hybrid inflation. Two distinct neutrino mass models, based on inverse seesaw and t ype I seesaw, are identified, with the latter arising from the breaking of $U(1)_R$ by nonrenormalizable superpotential terms. Depending on the neutrino mass model an appropriate set of intermediate scale color triplets from the Higgs superfields play a key role in proton decay channels that include $p rightarrow (e^{+},mu^+), pi^0$, $p rightarrow ( e^+,mu^{+}), K^0 $, $p rightarrow overline{ u}, pi^{+}$, and $p rightarrow overline{ u}, K^+ $. We identify regions of the parameter space that yield proton lifetime estimates which are testable at Hyper-Kamiokande and other next generation experiments. We discuss how gauge coupling unification in the presence of intermediate scale particles is realized, and a $Z_4$ symmetry is utilized to show how such intermediate scales can arise in flipped $SU(5)$. Finally, we compare our predictions for proton decay with previous work based on $SU(5)$ and flipped $SU(5)$.
We revisit supersymmetric hybrid inflation in the context of flipped $SU(5)$ model. With minimal superpotential and minimal Kahler potential, and soft SUSY masses of order $(1 - 100)$ TeV, compatibility with the Planck data yields a symmetry breaking scale $M$ of flipped $SU(5)$ close to $(2 - 4) times 10^{15}$ GeV. This disagrees with the lower limit $M gtrsim 7 times 10^{15}$ GeV set from proton decay searches by the Super-Kamiokande collaboration. We show how $M$ close to the unification scale $2times 10^{16}$ GeV can be reconciled with SUSY hybrid inflation by employing a non-minimal Kahler potential. Proton decays into $e^+ pi^0$ with an estimated lifetime of order $10^{36}$ years. The tensor to scalar ratio $r$ in this case can approach observable values $sim 10^{-4} - 10^{-3}$.
We minimally extend the Standard Model field content by adding new vector-like fermions at the TeV scale to allow gauge coupling unification at a realistic scale. We embed the model into a $SU(5)$ grand unified theory that is asymptotically safe and features an interacting fixed point for the gauge coupling. There are no Landau poles of the $U(1)$ gauge and Higgs couplings. Gauge, Yukawa and Higgs couplings are retraced from the fixed point and matched at the grand unification scale to those of the Standard Model rescaled up to the same energy. All couplings, their fixed point values and critical exponents always remain in the perturbative regime.
We embed the flipped SU(5) models into the SO(10) models. After the SO(10) gauge symmetry is broken down to the flipped SU(5) times U(1)_X gauge symmetry, we can split the five/one-plets and ten-plets in the spinor mathbf{16} and mathbf{bar{16}} Higg s fields via the stable sliding singlet mechanism. As in the flipped SU(5) models, these ten-plet Higgs fields can break the flipped SU(5) gauge symmetry down to the Standard Model gauge symmetry. The doublet-triplet splitting problem can be solved naturally by the missing partner mechanism, and the Higgsino-exchange mediated proton decay can be suppressed elegantly. Moreover, we show that there exists one pair of the light Higgs doublets for the electroweak gauge symmetry breaking. Because there exist two pairs of additional vector-like particles with similar intermediate-scale masses, the SU(5) and U(1)_X gauge couplings can be unified at the GUT scale which is reasonably (about one or two orders) higher than the SU(2)_L times SU(3)_C unification scale. Furthermore, we briefly discuss the simplest SO(10) model with flipped SU(5) embedding, and point out that it can not work without fine-tuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا