ﻻ يوجد ملخص باللغة العربية
The Dirac hydrogen atom with spin symmetry is shown has a SO(4) symmetry. The generators are derived, and the corresponding Casimir operator leads to the energy spectrum naturally. This type hydrogen atom is connected to a four-dimensional Dirac system with equal scalar and vector harmonic oscillator potential, by the Kustaanheimo-Stiefel transformation with a constraint.
We show that the relativistic hydrogen atom possesses an SO(4) symmetry by introducing a kind of pseudo-spin vector operator. The same SO(4) symmetry is still preserved in the relativistic quantum system in presence of an U(1) monopolar vector potent
We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we con
The relation between motion in $-1/r$ and $r^{2}$ potentials, known since Newton, can be demonstrated by the substitution $rrightarrow r^{2}$ in the classical/quantum radial equations of the Kepler/Hydrogen problems versus the harmonic oscillator. Th
We present an analytically solvable 3D light-front Hamiltonian model for hadrons that extends light-front holography by including finite mass quarks and a longitudinal confinement term. We propose that the model is suitable as an improved analytic ap
The relative contributions of explicit and dynamical chiral symmetry breaking in QCD models of the quark-gap equation are studied in dependence of frequently employed ansatze for the dressed interaction and quark-gluon vertex. The explicit symmetry b