ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of Lorentz and CPT symmetry with hadrons and nuclei

144   0   0.0 ( 0 )
 نشر من قبل Jacob Noordmans Ph. D.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we construct the effective chiral Lagrangian with hadronic and electromagnetic interactions induced by these operators. We develop the power-counting scheme and discuss loop diagrams and the one-pion-exchange nucleon-nucleon potential. The effective chiral Lagrangian is the basis for calculations of low-energy observables with hadronic degrees of freedom. As examples, we consider clock-comparison experiments with nuclei and spin-precession experiments with nucleons in storage rings. We derive strict limits on the dimension-five tensors that quantify Lorentz and CPT violation.



قيم البحث

اقرأ أيضاً

47 - Ralf Lehnert 2006
Lorentz and CPT tests involving matter-antimatter comparisons at low temperatures are discussed. SME predictions for transition frequencies in such systems include both matter-antimatter differences and sidereal variations. In hydrogen-antihydrogen s pectroscopy, leading-order effects in a 1S-2S transition as well as in a 1S Zeeman transition could exist that can be employed to obtain clean constraints. Similarly, tight bounds can be determined from Penning-trap experiments involving antiprotons.
Clock-comparison experiments are among the sharpest existing tests of Lorentz symmetry in matter. We characterize signals in these experiments arising from modifications to electron or nucleon propagators and involving Lorentz- and CPT-violating oper ators of arbitrary mass dimension. The spectral frequencies of the atoms or ions used as clocks exhibit perturbative shifts that can depend on the constituent-particle properties and can display sidereal and annual variations in time. Adopting an independent-particle model for the electronic structure and the Schmidt model for the nucleus, we determine observables for a variety of clock-comparison experiments involving fountain clocks, comagnetometers, ion traps, lattice clocks, entangled states, and antimatter. The treatment demonstrates the complementarity of sensitivities to Lorentz and CPT violation among these different experimental techniques. It also permits the interpretation of some prior results in terms of bounds on nonminimal coefficients for Lorentz violation, including first constraints on nonminimal coefficients in the neutron sector. Estimates of attainable sensitivities in future analyses are provided. Two technical appendices collect relationships between spherical and cartesian coefficients for Lorentz violation and provide explicit transformations converting cartesian coefficients in a laboratory frame to the canonical Sun-centered frame.
100 - Ralf Lehnert 2006
The breakdown of spacetime symmetries has recently been identified as a promising candidate signal for underlying physics, possibly arising through quantum-gravitational effects. This talk gives an overview over various aspects of CPT- and Lorentz-vi olation research. Particular emphasis is given to the interplay between CPT, Lorentz, and translation symmetry, mechanisms for CPT and Lorentz breaking, and the construction of a low-energy quantum-field description of such effect. This quantum field framework, called the SME, is employed to determine possible phenomenological consequences of CPT and Lorentz violation for neutral-meson interferometry.
75 - B. Quinn 2019
The status of Lorentz- and CPT-violation searches using measurements of the anomalous magnetic moment of the muon is reviewed. Results from muon g-2 experiments have set the majority of the most stringent limits on Standard- Model Extension Lorentz a nd CPT violation in the muon sector. These limits are consistent with calculations of the level of Standard-Model Extension effects required to account for the current 3.7{sigma} experiment-theory discrepancy in the muons g-2. The prospects for the new Muon g-2 Experiment at Fermilab to improve upon these searches is presented.
205 - Neil Russell 2008
This article reports on the Fourth Meeting on Lorentz and CPT Symmetry, CPT 07, held in August 2007 in Bloomington, Indiana, USA. The focus is on recent tests of Lorentz symmetry using atomic and optical physics. Results presented at the meeting incl ude improved bounds on Lorentz violation in the photon sector, and the first bounds on several coefficients in the gravity sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا