ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydroxylated MgO (111) reconstructions: why the case for clean surfaces does not hold water

162   0   0.0 ( 0 )
 نشر من قبل Laurence Marks
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental and theoretical analysis of the root(3)xroot(3)-R30 and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional calculations using the meta-GGA functional TPSS. The experimental data clearly shows that the surfaces contain significant coverages of hydroxyl terminations, even after UHV annealing, and as such cannot be the structures which have been previously reported. For the 2x2 surfaces a relatively simple structural framework is detailed which fits all the experimental and theoretical data. For the root(3)xroot(3) there turn out to be two plausible structures and neither the experimental nor theoretical results can differentiate between the two within error. However, by examining the conditions under which the surface is formed we describe a kinetic route for the transformation between the different reconstructions that involves mobile hydroxyl groups and protons, and relatively immobile cations, which strongly suggests only one of the two root(3)xroot(3) structures.



قيم البحث

اقرأ أيضاً

We report an experimental and theoretical analysis of the sqrt(3)x sqrt(3)-R30 and 2x2 reconstructions on the NiO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional c alculations using the meta-GGA hybrid functional TPSSh. While the main focus here is on the surface structure, we also observe an unusual step morphology with terraces containing only even numbers of unit cells during annealing of the surfaces. The experimental data clearly shows that the surfaces contain significant coverage of hydroxyl terminations, and the surface structures are essentially the same as those reported on the MgO (111) surface implying an identical kinetically-limited water-driven structural transition pathway. The octapole structure can therefore be all but ruled out for single crystals of NiO annealed in or transported through humid air. . The theoretical analysis indicates, as expected, that simple density functional theory methods for such strongly-correlated oxide surfaces are marginal, while better consideration of the metal d-electrons has a large effect although, it is still not perfect.
In this paper, we provide a comprehensive theoretical analysis of the electronic structure of InAs(111) surfaces with a special attention paid to the energy region close to the fundamental bandgap. Starting from the bulk electronic structure of InAs as calculated using PBE functional with included Hubbard correction and spin-orbit coupling, we deliver proper values for the bandgap, split-off energy, as well as effective electron, light- and heavy-hole masses in full consistency with available experimental results. On the basis of optimized atomic surfaces we recover scanning tunneling microscopy images, which being supplied with accessible experimental data make it possible to speculate on the formation of electron accumulation layer for both As- and In-terminated InAs(111) surfaces. Moreover, these results are accompanied by band structure simulations of conduction band states.
We analyze the basic structural units of simple reconstructions of the (111) surface of SrTiO3 using density functional calculations. The prime focus is to answer three questions: what is the most appropriate functional to use; how accurate are the e nergies; what are the dominant low-energy structures and where do they lie on the surface phase diagram. Using test calculations of representative small molecules we compare conventional GGA with higher-order methods such as the TPSS meta-GGA and on-site hybrid methods PBE0 and TPSSh, the later being the most accurate. There are large effects due to reduction of the metal d oxygen sp hybridization when using the hybrid methods which are equivalent to a dynamical GGA+U, which leads to rather substantial improvements in the atomization energies of simple calibration molecules, even though the d-electron density for titanium compounds is rather small. By comparing the errors of the different methods we are able to generate an estimate of the theoretical error, which is about 0.25eV per 1x1 unit cell, with changes of 0.5-1.0 eV per 1x1 cell with the more accurate method relative to conventional GGA. An analysis of the plausible structures reveals an unusual low-energy TiO2-rich configuration with an unexpected distorted trigonal biprismatic structure. This structure can act as a template for layers of either TiO or Ti2O3, consistent with experimental results as well as, in principle, Magnelli phases. The results also suggest that both the fracture surface and the stoichiometric SrTiO3 (111) surface should spontaneously disproportionate into SrO and TiO2 rich domains, and show that there are still surprises to be found for polar oxide surfaces.
172 - Norina A. Richter 2013
We investigate effects of doping on formation energy and concentration of oxygen vacancies at a metal oxide surface, using MgO (100) as an example. Our approach employs density-functional theory, where the performance of the exchange-correlation func tional is carefully analyzed, and the functional is chosen according to a fundamental condition on DFT ionization energies. The approach is further validated by CCSD(T) calculations for embedded clusters. We demonstrate that the concentration of oxygen vacancies at a doped oxide surface is largely determined by formation of a macroscopically extended space charge region.
66 - Chang Q Sun 2020
The segmental specific heat ratio of the couple hydrogen bond defines not only the phase of Vapor, Liquid, Ice I and XI phase with a quasisolid phase that shows the negative thermal extensibility but uniquely the slope of density of water ice in diff erent phases. Ice floats because H-O contracts less than O:H expands in the QS phase at cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا