ترغب بنشر مسار تعليمي؟ اضغط هنا

Concentration of Vacancies at Metal Oxide Surfaces: Case Study of MgO (100)

173   0   0.0 ( 0 )
 نشر من قبل Norina Richter
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Norina A. Richter




اسأل ChatGPT حول البحث

We investigate effects of doping on formation energy and concentration of oxygen vacancies at a metal oxide surface, using MgO (100) as an example. Our approach employs density-functional theory, where the performance of the exchange-correlation functional is carefully analyzed, and the functional is chosen according to a fundamental condition on DFT ionization energies. The approach is further validated by CCSD(T) calculations for embedded clusters. We demonstrate that the concentration of oxygen vacancies at a doped oxide surface is largely determined by formation of a macroscopically extended space charge region.



قيم البحث

اقرأ أيضاً

60 - J. Heinonen 1999
We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of the island size and approaches unity for very large islands. This is due to a crossover from periphery dominated mass transport to a regime where vacancies diffuse inside the island. The effective scaling exponents are in good agreement with theory and experiments.
The spin and orbital magnetic moments of the Fe3O4 epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism (XMCD). The ultrathin film retains a rather large total magnetic moment, i.e. (2.7+-0.15) uB/f.u., which is ~ 70% of that for the bulk-like Fe3O4. A significant unquenched orbital moment up to (0.54+-0.05) uB/f.u. was observed, which could come from the symmetry breaking at the Fe3O4/MgO interface. Such sizable orbital moment will add capacities to the Fe3O4-based spintronics devices in the magnetization reversal by the electric field.
Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordiated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomist ic thermodynamics, we investigate the interplay of bond-making, bond-breaking, and charge-carrier trapping at the corner defects at the (100) surface of a p-doped MgO in thermodynamic equilibrium with an O2 atmosphere. We show that by manipulating the coordination of surface atoms one can drastically change and even reverse the order of stability of reduced versus oxidized surface sites.
100 - L. De Santis , R. Resta 2000
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property wh ich discriminates in a very sharp, quantitative, way between different kinds of bonding. ELF shows that in the bulk of Al the electron distribution is essentially jelliumlike, while what happens at the surface strongly depends on packing. At the least packed surface, Al(110), ELF indicates a free-atom nature of the electron distribution in the outer region. The most packed surface, Al(111), is instead at the opposite end, and can be regarded as a jellium surface weakly perturbed by the presence of the ionic cores.
The formation energies of nanostructures play an important role in determining their properties, including the catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we find that the density functional theory (DFT) calculated formation energies of (2,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces may be described semi-quantitatively by the fraction of metal--oxygen bonds broken and the bonding band centers in the bulk metal oxide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا