ترغب بنشر مسار تعليمي؟ اضغط هنا

New Observations and a Possible Detection of Parameter Variations in the Transits of Gliese 436b

41   0   0.0 ( 0 )
 نشر من قبل Jeffrey Coughlin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ground-based observations of the transiting Neptune-mass planet Gl 436b obtained with the 3.5-meter telescope at Apache Point Observatory and other supporting telescopes. Included in this is an observed transit in early 2005, over two years before the earliest reported transit detection. We have compiled all available transit data to date and perform a uniform modeling using the JKTEBOP code. We do not detect any transit timing variations of amplitude greater than ~1 minute over the ~3.3 year baseline. We do however find possible evidence for a self-consistent trend of increasing orbital inclination, transit width, and transit depth, which supports the supposition that Gl 436b is being perturbed by another planet of < 12 Earth Masses in a non-resonant orbit.

قيم البحث

اقرأ أيضاً

We perform a detailed characterization of the planetary system orbiting the bright, nearby M dwarf Gliese 411 using radial velocities gathered by APF, HIRES, SOPHIE, and CARMENES. We confirm the presence of a signal with a period near $2900$ days tha t has been disputed as either a planet or long-period stellar magnetic cycle. An analysis of activity metrics including $mathrm{H_alpha}$ and $mathrm{logR_{HK}}$ indices supports the interpretation that the signal corresponds to a Neptune-mass planet, GJ 411 c. An additional signal near $215$ days was previously dismissed as an instrumental systematic, but our analysis shows that a planetary origin cannot be ruled out. With a semi-major axis of $0.5141pm0.0038$ AU, this candidates orbit falls between those of its companions and skirts the outer edge of the habitable zone. It has a minimum mass of $4.1pm0.6$ $M_oplus$, giving a radial velocity amplitude of $0.83pm0.12$ $mathrm{m,s^{-1}}$. If confirmed, this would be one of the lowest-amplitude planet detections from any of these four instruments. Our analysis of the joint radial velocity data set also provides tighter constraints on the orbital parameters for the previously known planets. Photometric data from $it{TESS}$ does not show any signs of a transit event. However, the outermost planet and candidate are prime targets for future direct imaging missions and GJ 411 c may be detectable via astrometry.
We present twelve new transit light curves of the hot-Jupiter TrES-3b observed during $2012-2018$ to probe the transit timing variation (TTV). By combining the mid-transit times determined from these twelve transit data with those re-estimated throug h uniform procedure from seventy one transit data available in the literature, we derive new linear ephemeris and obtain the timing residuals that suggest the possibility of TTV in TrES-3 system. However, the frequency analysis shows that the possible TTV is unlikely to be periodic, indicating the absence of an additional body in this system. To explore the other possible origins of TTV, the orbital decay and apsidal precession ephemeris models are fitted to the transit time data. We find decay rate of TrES-3b to be $bf dot{P_q}= -4.1 pm 3.1$ $ms$ ${yr}^{-1}$ and the corresponding estimated modified tidal quality factor of ${Q}^{}_{ast}$ $sim 1.11 times {10}^{5}$ is consistent with the theoretically predicted values for the stars hosting the hot-Jupiters. The shift in the transit arrival time of TrES-3b after eleven years is expected to be ${T}_{shift}sim 69.55 s$, which is consistent with the $RMS$ of the timing residuals. Besides, we find that the apsidal precession ephemeris model is statistically less probable than the other considered ephemeris models. It is also discussed that despite the linear ephemeris model appears to be the most plausible model to represent the transit time data, the possibility of the orbital decay cannot be completely ruled out in TrES-3 system. In order to confirm this, further high-precision and high-cadence follow-up observation of transits of TrES-3b would be important.
The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Ly$alpha$ line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $sim56%$ absorption found in Ly$alpha$ transits, simultaneously with the lack of absorption in H$alpha$ transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Ly$alpha$ observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s$^{-1}$ with a temperature of $[3-4]times10^5$ K. The stellar and planetary mass loss rates are found to be $2times 10^{-15}$ M$_odot$ yr$^{-1}$ and $sim[6-10]times10^9$ g s$^{-1}$, respectively, for a stellar EUV luminosity of $[0.8-1.6]times10^{27}$ erg s$^{-1}$. For the parameters explored in our simulations, none of our models present any significant absorption in the H$alpha$ line in agreement with the observations.
In minimal Supergravity (mSUGRA) models the lightest supersymmetric particle (assumed to be the lightest neutralino) provides an excellent cold dark matter (CDM) candidate. The supersymmetric parameter space is significantly reduced, if the limits on the CDM relic density, obtained from WMAP data, are used. Assuming a vanishing trilinear scalar coupling A0 and fixed values of tan(beta), these limits result in narrow lines of allowed regions in the m0-m1/2 plane, the so called WMAP strips. In this analysis the trilinear coupling A0 has been varied within +/-4 TeV. A fixed non vanishing A0 value leads to a shift of the WMAP strips in the m0-m1/2 plane.
We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary ecl ipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا