ﻻ يوجد ملخص باللغة العربية
The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Ly$alpha$ line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $sim56%$ absorption found in Ly$alpha$ transits, simultaneously with the lack of absorption in H$alpha$ transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Ly$alpha$ observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s$^{-1}$ with a temperature of $[3-4]times10^5$ K. The stellar and planetary mass loss rates are found to be $2times 10^{-15}$ M$_odot$ yr$^{-1}$ and $sim[6-10]times10^9$ g s$^{-1}$, respectively, for a stellar EUV luminosity of $[0.8-1.6]times10^{27}$ erg s$^{-1}$. For the parameters explored in our simulations, none of our models present any significant absorption in the H$alpha$ line in agreement with the observations.
We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly-$alpha$ transits of a Hot Jupiter (HJ) and a Warm Neptune (WN). We find that incr
GJ 1132b, which orbits an M dwarf, is one of the few known Earth-sized planets, and at 12 pc away it is one of the closest known transiting planets. Receiving roughly 19x Earths insolation, this planet is too hot to be habitable but can inform us abo
Strong atmospheric escape has been detected in several close-in exoplanets. As these planets consist mostly of hydrogen, observations in hydrogen lines, such as Ly-alpha and H-alpha, are powerful diagnostics of escape. Here, we simulate the evolution
Lyman $alpha$ observations of the transiting exoplanet HD 209458b enable the study of exoplanets exospheres exposed to stellar EUV fluxes, as well as the interacting stellar wind properties. In this study we present 3D hydrodynamical models for the s
In this paper we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June