ترغب بنشر مسار تعليمي؟ اضغط هنا

High Precision Radial Velocity Measurements in the Infrared: A First Assessment of the RV Stability of CRIRES

88   0   0.0 ( 0 )
 نشر من قبل Andreas Seifahrt
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High precision radial velocity (RV) measurements in the near infrared are on high demand, especially in the context of exoplanet search campaigns shifting their interest to late type stars in order to detect planets with ever lower mass or targeting embedded pre-main-sequence objects. ESO is offering a new spectrograph at the VLT -- CRIRES -- designed for high resolution near-infrared spectroscopy with a comparably broad wavelength coverage and the possibility to use gas-cells to provide a stable RV zero-point. We investigate here the intrinsic short-term RV stability of CRIRES, both with gas-cell calibration data and on-sky measurements using the absorption lines of the Earths atmosphere imprinted in the source spectrum as a local RV rest frame. Moreover, we also investigate for the first time the intrinsic stability of telluric lines at 4100 nm for features originating in the lower troposphere. Our analysis of nearly 5 hours of consecutive observations of MS Vel, a M2II bright giant centred at two SiO first overtone band-heads at 4100 nm, demonstrates that the intrinsic short-term stability of CRIRES is very high, showing only a slow and fully compensateable drift of up to 60 m/s after 4.5 hours. The radial velocity of the telluric lines is constant down to a level of approx. +/- 10 m/s (or 7/1000 of one pixel). Utilising the same telluriclines as a rest frame for our radial velocity measurements of the science target, we obtain a constant RV with a precision of approx. +/- 20 m/s for MS Vel as expected for a M-giant.

قيم البحث

اقرأ أيضاً

Precision radial velocity (RV) measurements in the near-infrared are a powerful tool to detect and characterize exoplanets around low-mass stars or young stars with higher magnetic activity. However, the presence of strong telluric absorption lines a nd emission lines in the near infrared that significantly vary in time can prevent extraction of RV information from these spectra by classical techniques, which ignore or mask the telluric lines. We present a methodology and pipeline to derive precision RVs from near-infrared spectra using a forward-modeling technique. We applied this to spectra with a wide wavelength coverage (Y, J, and H bands, simultaneously), taken by the InfraRed Doppler (IRD) spectrograph on the Subaru 8.2-m telescope. Our pipeline extracts the instantaneous instrumental profile of the spectrograph for each spectral segment, based on a reference spectrum of the laser-frequency comb that is injected into the spectrograph simultaneously with the stellar light. These profiles are used to derive the intrinsic stellar template spectrum, which is free from instrumental broadening and telluric features, as well as model and fit individual observed spectra in the RV analysis. Implementing a series of numerical simulations using theoretical spectra that mimic IRD data, we test the pipeline and show that IRD can achieve $<2$ m s$^{-1}$ precision for slowly rotating mid-to-late M dwarfs with a signal-to-noise ratio $> 100$ per pixel at 1000 nm. Dependences of RV precision on various stellar parameters (e.g., $T_{rm eff}$, $vsin i$, [Fe/H]) and the impact of telluric-line blendings on the RV accuracy are discussed through the mock spectra analyses. We also apply the RV-analysis pipeline to the observed spectra of GJ 699 and TRAPPIST-1, demonstrating that the spectrograph and the pipeline are capable of an RV accuracy of $<3$ m s$^{-1}$ at least on a time scale of a few months.
247 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
The Doppler method of exoplanet detection has been extremely successful, but suffers from contaminating noise from stellar activity. In this work a model of a rotating star with a magnetic field based on the geometry of the K2 star Epsilon Eridani is presented and used to estimate its effect on simulated radial velocity measurements. A number of different distributions of unresolved magnetic spots were simulated on top of the observed large-scale magnetic maps obtained from eight years of spectropolarimetric observations. The radial velocity signals due to the magnetic spots have amplitudes of up to 10 m s$^{-1}$, high enough to prevent the detection of planets under 20 Earth masses in temperate zones of solar type stars. We show that the radial velocity depends heavily on spot distribution. Our results emphasize that understanding stellar magnetic activity and spot distribution is crucial for detection of Earth analogues.
Adaptive optics (AO) have been used to correct wavefronts to achieve diffraction limited point spread functions in a broad range of optical applications, prominently ground-based astronomical telescopes operating in near infra-red. While most AO syst ems cannot provide diffraction-limited performance in the optical passband (400 nm - 900 nm), AO can improve image concentration, as well as both near and far field image stability, within an AO-fed spectrograph. Enhanced near and far field stability increase wavelength-scale stability in high dispersion spectrographs. In this work, we describe detailed modelling of the stability improvements achievable on extremely large telescopes. These improvements in performance may enable the mass measurement of Earth Twins by the precision radial velocity method, and the discovery of evidence of exobiotic activity in exoplanet atmospheres with the next generation of extremely large telescopes (ELTs). In this paper, we report on numerical simulations of the impact of AO on the performance of the GMT-Consortium Large Earth Finder (G-CLEF) instrument for the future Giant Magellan Telescope (GMT). The proximate cause of this study is to evaluate what improvements AO offer for exoplanet mass determination by the precision radial velocity (PRV) method and the discovery of biomarkers in exoplanet atmospheres. A modified AO system capable of achieving this improved stability even with changing conditions is proposed.
154 - Suvrath Mahadevan , Jian Ge 2008
Considerable interest is now focused on the detection of terrestrial mass planets around M dwarfs, and radial velocity surveys with high-resolution spectrographs in the near infrared are expected to be able to discover such planets. We explore the po ssibility of using commercially available molecular absorption gas cells as a wavelength reference standard for high-resolution fiber-fed spectrographs in the near-infrared. We consider the relative merits and disadvantages of using such cells compared to Thorium-Argon emission lamps and conclude that in the astronomical H band they are a viable method of simultaneous calibration, yielding an acceptable wavelength calibration error for most applications. Four well-characterized and commercially available standard gas cells of HCN, 12C$_2$H$_2$, 12CO, and 13CO can together span over 120nm of the H band, making them suitable for use in astronomical spectrographs. The use of isotopologues of these molecules can increase line densities and wavelength coverage, extending their application to different wavelength regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا