ﻻ يوجد ملخص باللغة العربية
Considerable interest is now focused on the detection of terrestrial mass planets around M dwarfs, and radial velocity surveys with high-resolution spectrographs in the near infrared are expected to be able to discover such planets. We explore the possibility of using commercially available molecular absorption gas cells as a wavelength reference standard for high-resolution fiber-fed spectrographs in the near-infrared. We consider the relative merits and disadvantages of using such cells compared to Thorium-Argon emission lamps and conclude that in the astronomical H band they are a viable method of simultaneous calibration, yielding an acceptable wavelength calibration error for most applications. Four well-characterized and commercially available standard gas cells of HCN, 12C$_2$H$_2$, 12CO, and 13CO can together span over 120nm of the H band, making them suitable for use in astronomical spectrographs. The use of isotopologues of these molecules can increase line densities and wavelength coverage, extending their application to different wavelength regions.
We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 1
Precision radial velocity (RV) measurements in the near-infrared are a powerful tool to detect and characterize exoplanets around low-mass stars or young stars with higher magnetic activity. However, the presence of strong telluric absorption lines a
We describe a successful effort to produce a laser comb around 1.55 $mu$m in the astronomical H band using a method based on a line-referenced, electro-optical-modulation frequency comb. We discuss the experimental setup, laboratory results, and proo
High precision radial velocity (RV) measurements in the near infrared are on high demand, especially in the context of exoplanet search campaigns shifting their interest to late type stars in order to detect planets with ever lower mass or targeting
Modal noise in fibers has been shown to limit the signal-to-noise ratio achievable in fiber-coupled, high-resolution spectrographs if it is not mitigated via modal scrambling techniques. Modal noise become significantly more important as the waveleng