ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-delayed feedback in neurosystems

204   0   0.0 ( 0 )
 نشر من قبل Philipp H\\\"ovel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time synchronization can be either enhanced or suppressed. In delay-coupled neurons, antiphase oscillations can be induced for sufficiently large delay and coupling strength. The additional application of time-delayed self-feedback leads to complex scenarios of synchronized in-phase or antiphase oscillations, bursting patterns, or amplitude death.



قيم البحث

اقرأ أيضاً

Control of the motion of cavity solitons is one the central problems in nonlinear optical pattern formation. We report on the impact of the phase of the time-delayed optical feedback and carrier lifetime on the self-mobility of localized structures o f light in broad area semiconductor cavities. We show both analytically and numerically that the feedback phase strongly affects the drift instability threshold as well as the velocity of cavity soliton motion above this threshold. In addition we demonstrate that non-instantaneous carrier response in the semiconductor medium is responsible for the increase in critical feedback rate corresponding to the drift instability.
We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale non linear resonant tunneling diode coupled to a laser that we link to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback.
The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator model. By using numerical continuation methods in two spatial dimensions, we establish a bifurcation diagram showing the emergence of localized spots. We characterize the transition from a single spot to an extended pattern in the form of squares. In the second part, we incorporate delayed feedback control and show that delayed feedback can induce a spontaneous motion of both localized and periodic dissipative structures. We characterize this motion by estimating the threshold and the velocity of the moving dissipative structures.
The visibility of the two-photon interference in the Franson interferometer serves as a measure of the energy-time entanglement of the photons. We propose to control the visibility of the interference in the second-order coherence function by impleme nting a coherent time-delayed feedback mechanism. Simulating the non-Markovian dynamics within the matrix product state framework, we find that the visibility for two photons emitted from a three-level system (3LS) in ladder configuration can be enhanced significantly for a wide range of parameters by slowing down the decay of the upper level of the 3LS.
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system repre sents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable phase. We present an analysis of the domain of control and support our results by numerical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا