ﻻ يوجد ملخص باللغة العربية
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system represents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable phase. We present an analysis of the domain of control and support our results by numerical calculations.
We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert fu
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding charac
We refute an often invoked theorem which claims that a periodic orbit with an odd number of real Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form proposed by Pyragas. Using a generic normal f
We present an algorithm for a time-delayed feedback control design to stabilize periodic orbits with an odd number of positive Floquet exponents in autonomous systems. Due to the so-called odd number theorem such orbits have been considered as uncont
We investigate the possibility to suppress noise-induced intensity pulsations (relaxation oscillations) in semiconductor lasers by means of a time-delayed feedback control scheme. This idea is first studied in a generic normal form model, where we de