ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Brightening Propagation of Post-Flare Loops Observed by TRACE

49   0   0.0 ( 0 )
 نشر من قبل Leping Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Examining flare data observed by TRACE satellite from May 1998 to December 2006, we choose 190 (151 M-class and 39 X-class) flare events which display post-flare loops (PFLs), observed by 171 AA and 195 AA wavelengths. 124 of the 190 events exhibit flare ribbons (FRs), observed by 1600 AA images. We investigate the propagation of the brightening of these PFLs along the neutral lines and the separation of the FRs perpendicular to the neutral lines. In most of the cases, the length of the FRs ranges from 20 Mm to 170 Mm. The propagating duration of the brightening is from 10 to 60 minutes, and from 10 minutes to 70 minutes for the separating duration of the FRs. The velocities of the propagation and the separation range from 3 km/s to 39 km/s and 3 km/s to 15 km/s, respectively. Both of the propagating velocities and the separating velocities are associated with the flare strength and the length of the FRs. It appears that the propagation and the separation are dynamically coupled, that is the greater the propagating velocity is, the faster the separation is. Furthermore, a greater propagating velocity corresponds to a greater deceleration (or acceleration). These PFLs display three types of propagating patterns. Type I propagation, which possesses about half of all the events, is that the brightening begins at the middle part of a set of PFLs, and propagates bi-directionally towards its both ends. Type II, possessing 30%, is that the brightening firstly appears at one end of a set of PFLs, then propagates to the other end. The remnant belongs to Type III propagation which displays that the initial brightening takes place at two (or more than two) positions on two (or more than two) sets of PFLs, and each brightening propagates bi-directionally along the neutral line.

قيم البحث

اقرأ أيضاً

The density distribution of flare loops and the mechanisms of their emission in the continuum are still open questions. On September 10, 2017 a prominent loop system appeared during the gradual phase of an X8.2 flare (SOL2017-09-10), visible in all p assbands of SDO/AIA and in the white-light continuum of SDO/HMI. We investigate its electron density by taking into account all radiation processes in the flare loops, i.e. the Thomson continuum, hydrogen Paschen and Brackett recombination continua, as well as free-free continuum emission. We derive a quadratic function of the electron density for a given temperature and effective loop thickness. By absolutely calibrating SDO/HMI intensities, we convert the measured intensities into electron density at each pixel in the loops. For a grid of plausible temperatures between cool (6000 K) and hot (10^6 K) structures, the electron density is computed for representative effective thicknesses between 200 and 20 000 km. We obtain a relatively high maximum electron density, about 10^13 cm^-3. At such high electron densities, the Thomson continuum is negligible and therefore one would not expect a significant polarization degree in dense loops. We conclude that the Paschen and Brackett recombination continua are dominant in cool flare loops, while the free-free continuum emission is dominant for warmer and hot loops.
We present an analysis of off-limb cool flare loops observed by SDO/AIA during the gradual phase of SOL2017-09-10T16:06 X8.2-class flare. In the EUV channels starting from the 335 {AA} one, cool loops appear as dark structures against the bright loop arcade. These dark structures were precisely coaligned (spatially and temporally) with loops observed by SST in emission lines of hydrogen and ionized calcium. Recently published semi-empirical model of cool loops based on SST observations serves us to predict the level of hydrogen and helium recombination continua. The continua were synthesized using an approximate non-LTE approach and theoretical spectra were then transformed to AIA signals. Comparison with signals detected inside the dark loops shows that only in AIA 211 {AA} channel the computed level of recombination continua is consistent with observations for some models, while in all other channels which are more distant from the continua edges the synthetic continuum is far too low. In analogy with on-disk observations of flares we interpret the surplus emission as due to numerous EUV lines emitted from hot but faint loops in front of the cool ones. Finally we briefly comment on failure of the standard absorption model when used for analysis of the dark-loop brightness.
76 - S.Terzo , F.Reale 2010
In the framework of TRACE coronal observations, we compare the analysis and diagnostics of a loop after subtracting the background with two different and independent methods. The dataset includes sequences of images in the 171 A, 195 A filter bands o f TRACE. One background subtraction method consists in taking as background values those obtained from interpolation between concentric strips around the analyzed loop. The other method is a pixel-to-pixel subtraction of the final image when the loop had completely faded out, already used by Reale & Ciaravella 2006. We compare the emission distributions along the loop obtained with the two methods and find that they are considerably different. We find differences as well in the related derive filter ratio and temperature profiles. In particular, the pixel-to-pixel subtraction leads to coherent diagnostics of a cooling loop. With the other subtraction the diagnostics are much less clear. The background subtraction is a delicate issue in the analysis of a loop. The pixel-to-pixel subtraction appears to be more reliable, but its application is not always possible. Subtraction from interpolation between surrounding regions can produce higher systematic errors, because of intersecting structures and of the large amount of subtracted emission in TRACE observations.
A class X1.5 flare started on the solar limb at 00:43 UT on 21 April 2002, which was associated with a CME observed at 01:27 UT by LASCO C2. The coordinated analyses of this flare include TRACE 195 {AA} images and SUMER spectra in lines of Fe XXI, Fe XII, and C II. We find that: 1) The flare began with a jet seen by TRACE, which was detected by SUMER in the C II line as a strong brightening with blue shifts up to 170 km s$^{-1}$. At that time only weak emission was detected in Fe XII and Fe XXI. 2) Subsequently, a weak looplike brightening started south of the jet, moving outwards with an average speed of about 150 km s$^{-1}$. The SUMER spectra responded this moving loop as separatingly brightenings, visible only in the Fe XXI line. The southwards moving component contains red- and blue-shifted emission features and has an apparent speed of $sim$120 km s$^{-1}$. The absence of signatures in Fe XII and C II lines indicates that the moving weak loop seen by TRACE corresponds to the emission from very hot plasma, in a blend line in the 195 {AA} bandpass due to Fe XXIV formed at T > 10 MK. 3) The trigger mechanism of the flare and associated CME can be interpreted in the same way as that proposed by Wang et al. (2002) for an event with similar initial features.
We study the temporal evolution of coronal loops using data from the Solar X-ray Imager (SXI) on board of GOES-12. This instrument allows us to follow in detail the full lifetime of coronal loops. The observed light curves suggest three somewhat dist inct evolutionary phases: rise, main, and decay. The durations and characteristic timescales of these phases are much longer than a cooling time and indicate that the loop-averaged heating rate increases slowly, reaches a maintenance level, and then decreases slowly. This suggests that a single heating mechanism operates for the entire lifetime of the loop. For monolithic loops, the loop-averaged heating rate is the intrinsic energy release rate of the heating mechanism. For loops that are bundles of impulsively heated strands, it is an indication of the frequency of occurrence of individual heating events, or nanoflares. We show that the timescale of the loop-averaged heating rate is proportional to the timescale of the observed intensity variation. The ratios of the radiative to conductive cooling times in the loops are somewhat less than 1, putting them intermediate between the values measured previously for hotter and cooler loops. Our results provide further support for the existence of a trend suggesting that all loops are heated by the same mechanism, or that different mechanisms have fundamental similarities (e.g., are all impulsive or are all steady with similar rates of heating).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا