ترغب بنشر مسار تعليمي؟ اضغط هنا

On the importance of background subtraction in the analysis of coronal loops observed with TRACE

78   0   0.0 ( 0 )
 نشر من قبل Sergio Terzo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of TRACE coronal observations, we compare the analysis and diagnostics of a loop after subtracting the background with two different and independent methods. The dataset includes sequences of images in the 171 A, 195 A filter bands of TRACE. One background subtraction method consists in taking as background values those obtained from interpolation between concentric strips around the analyzed loop. The other method is a pixel-to-pixel subtraction of the final image when the loop had completely faded out, already used by Reale & Ciaravella 2006. We compare the emission distributions along the loop obtained with the two methods and find that they are considerably different. We find differences as well in the related derive filter ratio and temperature profiles. In particular, the pixel-to-pixel subtraction leads to coherent diagnostics of a cooling loop. With the other subtraction the diagnostics are much less clear. The background subtraction is a delicate issue in the analysis of a loop. The pixel-to-pixel subtraction appears to be more reliable, but its application is not always possible. Subtraction from interpolation between surrounding regions can produce higher systematic errors, because of intersecting structures and of the large amount of subtracted emission in TRACE observations.

قيم البحث

اقرأ أيضاً

We simulate transverse oscillations in radiatively cooling coronal loops and forward-model their spectroscopic and imaging signatures, paying attention to the influence of background emission. The transverse oscillations are driven at one footpoint b y a periodic velocity driver. A standing kink wave is subsequently formed and the loop cross-section is deformed due to the Kelvin-Helmholtz instability, resulting in energy dissipation and heating at small scales. Besides the transverse motions, a long-period longitudinal flow is also generated due to the ponderomotive force induced slow wave. We then transform the simulated straight loop to a semi-torus loop and forward-model their spectrometer and imaging emissions, mimicking observations of Hinode/EIS and SDO/AIA. We find that the oscillation amplitudes of the intensity are different at different slit positions, but are roughly the same in different spectral lines or channels. X-t diagrams of both the Doppler velocity and the Doppler width show periodic signals. We also find that the background emission dramatically decreases the Doppler velocity, making the estimated kinetic energy two orders of magnitude smaller than the real value. Our results show that background subtraction can help recover the real oscillation velocity. These results are helpful for further understanding transverse oscillations in coronal loops and their observational signatures. However, they cast doubt on the spectroscopically estimated energy content of transverse waves using the Doppler velocity.
49 - Leping Li , Jun Zhang 2008
Examining flare data observed by TRACE satellite from May 1998 to December 2006, we choose 190 (151 M-class and 39 X-class) flare events which display post-flare loops (PFLs), observed by 171 AA and 195 AA wavelengths. 124 of the 190 events exhibit f lare ribbons (FRs), observed by 1600 AA images. We investigate the propagation of the brightening of these PFLs along the neutral lines and the separation of the FRs perpendicular to the neutral lines. In most of the cases, the length of the FRs ranges from 20 Mm to 170 Mm. The propagating duration of the brightening is from 10 to 60 minutes, and from 10 minutes to 70 minutes for the separating duration of the FRs. The velocities of the propagation and the separation range from 3 km/s to 39 km/s and 3 km/s to 15 km/s, respectively. Both of the propagating velocities and the separating velocities are associated with the flare strength and the length of the FRs. It appears that the propagation and the separation are dynamically coupled, that is the greater the propagating velocity is, the faster the separation is. Furthermore, a greater propagating velocity corresponds to a greater deceleration (or acceleration). These PFLs display three types of propagating patterns. Type I propagation, which possesses about half of all the events, is that the brightening begins at the middle part of a set of PFLs, and propagates bi-directionally towards its both ends. Type II, possessing 30%, is that the brightening firstly appears at one end of a set of PFLs, then propagates to the other end. The remnant belongs to Type III propagation which displays that the initial brightening takes place at two (or more than two) positions on two (or more than two) sets of PFLs, and each brightening propagates bi-directionally along the neutral line.
Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal non-equilibrium (TNE). The active regions previously studied with EIT/SOHO and AIA/SDO indicated that long-perio d intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1,020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibits TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.
We present the first Hinode/EIS observations of 5 min quasi-periodic oscillations detected in a transition-region line (He II) and five coronal lines (Fe X, Fe XII, Fe XIII, Fe XIV, and Fe XV) at the footpoint of a coronal loop. The oscillations exis t throughout the whole observation, characterized by a series of wave packets with nearly constant period, typically persisting for 4-6 cycles with a lifetime of 20-30 min. There is an approximate in-phase relation between Doppler shift and intensity oscillations. This provides evidence for slow magnetoacoustic waves propagating upwards from the transition region into the corona. We find that the oscillations detected in the five coronal lines are highly correlated, and the amplitude decreases with increasing temperature. The amplitude of Doppler shift oscillations decrease by a factor of about 3, while that of relative intensity decreases by a factor of about 4 from Fe X to Fe XV. These oscillations may be caused by the leakage of the photospheric p-modes through the chromosphere and transition region into the corona, which has been suggested as the source for intensity oscillations previously observed by TRACE. The temperature dependence of the oscillation amplitudes can be explained by damping of the waves traveling along the loop with multithread structure near the footpoint. Thus, this property may have potential value for coronal seismology in diagnostic of temperature structure in a coronal loop.
It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied systematically. In this paper we apply three different extrapolation techniques - a simple potential model, a NLFF model based on photospheric vector data, and a NLFF model based on forward fitting magnetic sources with vertical currents - to 15 active regions that span a wide range of magnetic conditions. We use a distance metric to assess how well each of these models is able to match field lines to the 12,202 loops traced in coronal images. These distances are typically 1-2. We also compute the misalignment angle between each traced loop and the local magnetic field vector, and find values of 5-12$^circ$. We find that the NLFF models generally outperform the potential extrapolation on these metrics, although the differences between the different extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that both the extrapolations and loop identification can be improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا