ﻻ يوجد ملخص باللغة العربية
The observation of PeV neutrinos is an open window to study New Physics processes. Among all possible neutrino observables, the neutrino flavor composition can reveal underlying interactions during the neutrino propagation. We study the effects on neutrino oscillations of dark matter-neutrino interactions. We estimate the size of the interaction strength to produce a sizable deviation with respect to the flavor composition from oscillations in vacuum. We found that the dark matter distribution produces flavor compositions non reproducible by other New Physics phenomena. Besides, the dark matter effect predicts flavor compositions which depend on the neutrinos arrival direction. This feature might be observed in neutrino telescopes like IceCube and KM3NET with access to different sky sections. This effect presents a novel way to test Dark Matter particle models.
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo
Neutrino oscillations are a widely observed and well established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultan
We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these s