ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighing black holes from zero to high redshift

75   0   0.0 ( 0 )
 نشر من قبل Alessandro Marconi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The application of the virial theorem provides a tool to estimate supermassive black hole (BH) masses in large samples of active galactic nuclei (AGN) with broad emission lines at all redshifts and luminosities, if the broad line region (BLR) is gravitationally bound. In this paper we discuss the importance of radiation forces on BLR clouds arising from the deposition of momentum by ionizing photons. Such radiation forces counteract gravitational ones and, if not taken into account, BH masses can be severely underestimated. We provide virial relations corrected for the effect of radiation pressure and we discuss their physical meaning and application. If these corrections to virial masses, calibrated with low luminosity objects, are extrapolated to high luminosities then the BLRs of most quasars might be gravitationally unbound. The importance of radiation forces in high luminosity objects must be thoroughly investigated to assess the reliability of quasar BH masses.

قيم البحث

اقرأ أيضاً

Supermassive black holes (SMBHs) are ubiquitously found at the centers of most galaxies. Measuring SMBH mass is important for understanding the origin and evolution of SMBHs. However, traditional methods require spectral data which is expensive to ga ther. To solve this problem, we present an algorithm that weighs SMBHs using quasar light time series, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 data for a sample of $9,038$ spectroscopically confirmed quasars to map out the nonlinear encoding between black hole mass and multi-color optical light curves. We find a 1$sigma$ scatter of 0.35 dex between the predicted mass and the fiducial virial mass based on SDSS single-epoch spectra. Our results have direct implications for efficient applications with future observations from the Vera Rubin Observatory.
Supermassive black holes (SMBHs) are ubiquitously found at the centers of most massive galaxies. Measuring SMBH mass is important for understanding the origin and evolution of SMBHs. However, traditional methods require spectroscopic data which is ex pensive to gather. We present an algorithm that weighs SMBHs using quasar light time series, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of $38,939$ spectroscopically confirmed quasars to map out the nonlinear encoding between SMBH mass and multi-color optical light curves. We find a 1$sigma$ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, textsf{AGNet}, is publicly available at {color{red} url{https://github.com/snehjp2/AGNet}}.
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
We consider the spacetimes corresponding to static Global Monopoles with interior boundaries corresponding to a Black Hole Horizon and analyze the behavior of the appropriate ADM mass as a function of the horizon radius r_H. We find that for small en ough r_H, this mass is negative as in the case of the regular global monopoles, but that for large enough r_H the mass becomes positive encountering an intermediate value for which we have a Black Hole with zero ADM mass.
68 - P. Casella , G. Ponti (2 , 3 2008
We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane, populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive a ctive galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا