ﻻ يوجد ملخص باللغة العربية
We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane, populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stell
We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with L_X > 5x10^40 erg/s) located within 100 Mpc identified in
The nature of ultraluminous X-ray sources (ULXs) -- off-nuclear extra-galactic sources with luminosity, assumed isotropic, $gtrsim 10^{39}$ erg s$^{-1}$ -- is still debated. One possibility is that ULXs are stellar black holes accreting beyond the Ed
We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations ind
To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the