ﻻ يوجد ملخص باللغة العربية
In economics, insurance and finance, value at risk (VaR) is a widely used measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, time horizon, and probability $alpha$, the $100alpha%$ VaR is defined as a threshold loss value, such that the probability that the loss on the portfolio over the given time horizon exceeds this value is $alpha$. That is to say, it is a quantile of the distribution of the losses, which has both good analytic properties and easy interpretation as a risk measure. However, its extension to the multivariate framework is not unique because a unique definition of multivariate quantile does not exist. In the current literature, the multivariate quantiles are related to a specific partial order considered in $mathbb{R}^{n}$, or to a property of the univariate quantile that is desirable to be extended to $mathbb{R}^{n}$. In this work, we introduce a multivariate value at risk as a vector-valued directional risk measure, based on a directional multivariate quantile, which has recently been introduced in the literature. The directional approach allows the manager to consider external information or risk preferences in her/his analysis. We have derived some properties of the risk measure and we have compared the univariate textit{VaR} over the marginals with the components of the directional multivariate VaR. We have also analyzed the relationship between some families of copulas, for which it is possible to obtain closed forms of the multivariate VaR that we propose. Finally, comparisons with other alternative multivariate VaR given in the literature, are provided in terms of robustness.
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble
Several well-established benchmark predictors exist for Value-at-Risk (VaR), a major instrument for financial risk management. Hybrid methods combining AR-GARCH filtering with skewed-$t$ residuals and the extreme value theory-based approach are parti
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno
In this paper we propose a novel Bayesian methodology for Value-at-Risk computation based on parametric Product Partition Models. Value-at-Risk is a standard tool to measure and control the market risk of an asset or a portfolio, and it is also requi
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of