ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton-Rich Nuclear Statistical Equilibrium

36   0   0.0 ( 0 )
 نشر من قبل Ivo Seitenzahl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.

قيم البحث

اقرأ أيضاً

Background: Exotic non-spherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short range nuclear attraction and long range Coulomb repulsion. Purpose: We explore the impact of nu clear pasta on nucleosynthesis, during neutron star mergers, as cold dense nuclear matter is ejected and decompressed. Methods: We perform classical molecular dynamics simulations with 51200 and 409600 nucleons, that are run on GPUs. We expand our simulation region to decompress systems from an initial density of 0.080 fm^{-3} down to 0.00125 fm^{-3}. We study proton fractions of Y_P=0.05, 0.10, 0.20, 0.30, and 0.40 at T =0.5, 0.75, and 1.0 MeV. We calculate the composition of the resulting systems using a cluster algorithm. Results: We find final compositions that are in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than Y_P=0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
109 - Ad. R. Raduta 2018
Extensive calculations of properties of supernova matter are presented, using the extended Nuclear Statistical Equilibrium model of PRC92 055803 (2015) based on a statistical distribution of Wigner-Seitz cells modeled using realistic nuclear mass and level density tables, complemented with a non-relativistic Skyrme functional for unbound particles and beyond drip-line nuclei. Both thermodynamic quantities and matter composition are examined as a function of baryonic density, temperature, and proton fraction, within a large domain adapted for applications in supernova simulations. The results are also provided in the form of a table, with grid mesh and format compatible with the CompOSE platform [http://compose.obspm.fr/] for direct use in supernova simulations. Detailed comparisons are also presented with other existing databases, all based on relativistic mean-field functionals, and the differences between the different models are outlined. We show that the strongest impact on the predictions is due to the different hypotheses used to define the cluster functional and its modifications due to the presence of a nuclear medium.
Chemical constants extracted from $^{124}$Xe+ $^{124}$Sn collisions at 32 AMeV are compared to the predictions of an extended Nuclear Statistical Equilibrium model including mean-field interactions and in-medium binding energy shifts for the light ($ Zleq 2$) clusters. The ion species and density dependence of the in-medium modification is directly extracted from the experimental data. We show that the shift increases with the mass of the cluster and the density of the medium, and we provide a simple linear fit for future use in astrophysical simulations in the framework of the CompOSE data base. The resulting mass fractions are computed in representative thermodynamic conditions relevant for supernova and neutron star mergers. A comparison to the results of a similar analysis of the same data performed in the framework of a relativistic mean-field model shows a good agreement at low density, but significant discrepancies close to the Mott dissolution of clusters in the dense medium.
Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.
In this work we describe the Non-Equilibrium Statistical Operator Method (NESOM). The NESOM is a powerful formalism that seems to offer an elegant and concise way for an analytical treatment in the theory of irreversible processes, adequate to deal w ith a large class of experimental situations, and physically clear picture of irreversible processes. The method invented by D. N. Zubarev is also practical and efficient in the study of the optical and carrier dynamics in semiconductors. Keywords: nonequilibrium phenomena; kinetic theory; transport processes; irreversible processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا