ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond the frame rate: Measuring high-frequency fluctuations with light intensity modulation

106   0   0.0 ( 0 )
 نشر من قبل Wesley Wong
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Power spectral density measurements of any sampled signal are typically restricted by both acquisition rate and frequency response limitations of instruments, which can be particularly prohibitive for video-based measurements. We have developed a new method called Intensity Modulation Spectral Analysis (IMSA) that circumvents these limitations, dramatically extending the effective detection bandwidth. We demonstrate this by video-tracking an optically-trapped microsphere while oscillating an LED illumination source. This approach allows us to quantify fluctuations of the microsphere at frequencies over 10 times higher than the Nyquist frequency, mimicking a significantly higher frame rate.



قيم البحث

اقرأ أيضاً

The main goal of the FAMU experiment is the measurement of the hyperfine splitting (hfs) in the 1S state of muonic hydrogen $Delta E_{hfs}(mu^-p)1S$. The physical process behind this experiment is the following: $mu p$ are formed in a mixture of hydr ogen and a higher-Z gas. When absorbing a photon at resonance-energy $Delta E_{hfs}approx0.182$~eV, in subsequent collisions with the surrounding $H_2$ molecules, the $mu p$ is quickly de-excited and accelerated by $sim2/3$ of the excitation energy. The observable is the time distribution of the K-lines X-rays emitted from the $mu Z$ formed by muon transfer $(mu p) +Z rightarrow (mu Z)^*+p$, a reaction whose rate depends on the $mu p$ kinetic energy. The maximal response, to the tuned laser wavelength, of the time distribution of X-ray from K-lines of the $(mu Z)^*$ cascade indicate the resonance. During the preparatory phase of the FAMU experiment, several measurements have been performed both to validate the methodology and to prepare the best configuration of target and detectors for the spectroscopic measurement. We present here the crucial study of the energy dependence of the transfer rate from muonic hydrogen to oxygen ($Lambda_{mu p rightarrow mu O}$), precisely measured for the first time.
The correlation properties of the magnitudes of a time series (sometimes called volatility) are associated with nonlinear and multifractal properties and have been applied in a great variety of fields. Here, we have obtained analytically the expressi on of the autocorrelation of the magnitude series of a linear Gaussian noise as a function of its correlation as well as several analytical relations involving them. For both, models and natural signals, the deviation from these equations can be used as an index of non-linearity that can be applied to relatively short records and that does not require the presence of scaling in the time series under study. We apply this approach to show that the heart-beat records during rest show higher non-linearities than the records of the same subject during moderate exercise. This behavior is also achieved on average for the analyzed set of 10 semiprofessional soccer players. This result agrees with the fact that other measures of complexity are dramatically reduced during exercise and can shed light on its relationship with the withdrawal of parasympathetic tone and/or the activation of sympathetic activity during physical activity.
An improved analysis for single particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the AMO instrument at the Linac Coherent Light Source (LCLS) as part of th e SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from the half of the detector and small fraction of single hits. General SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus structure determination step. The presented processing pipeline allowed us to determine the three-dimensional structure of the bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Spin torque nano-oscillators are nanoscopic microwave frequency generators which excel due to their large frequency tuning range and agility for amplitude and frequency modulation. Due to their compactness, they are regarded as suitable candidates fo r applications in wireless communications, where cost-effective and CMOS-compatible standalone devices are required. In this work, we study the ability of a magnetic-tunnel-junction (MTJ) based spin torque nano-oscillator to respond to a binary input sequence encoded in a square-shaped current pulse for its application as a frequency-shift-keying (FSK) based emitter. We demonstrate that below the limit imposed by the spin torque nano-oscillators intrinsic relaxation frequency, an agile variation between discrete oscillator states is possible. For this kind of devices, we demonstrate FSK up to data rates of 400 Mbps which is well suited for the application of such scillators in wireless networks.
The routine atomic-resolution structure determination of single particles is expected to have profound implications for probing the structure-function relationship in systems ranging from energy materials to biological molecules. Extremely-bright, ul trashort-pulse X-ray sources---X-ray Free Electron Lasers (XFELs)---provide X-rays that can be used to probe ensembles of nearly identical nano-scale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the two-dimensional detector is much smaller than the number of pixels. This latter concern, the signal sparsity, materially impedes the application of the method. We demonstrate an experimental analog using a synchrotron X-ray source that yields signal levels comparable to those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross-check on the fidelity of the reconstructed data that is not available during XFEL experiments. We establish---using this experimental data---that a sparsity of order $1.3times10^{-3}$ photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic-resolution XFEL single particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا