ترغب بنشر مسار تعليمي؟ اضغط هنا

An intermediate regime for exit phenomena driven by non-Gaussian Levy noises

50   0   0.0 ( 0 )
 نشر من قبل Jinqiao Duan
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A dynamical system driven by non-Gaussian Levy noises of small intensity is considered. The first exit time of solution orbits from a bounded neighborhood of an attracting equilibrium state is estimated. For a class of non-Gaussian Levy noises, it is shown that the mean exit time is asymptotically faster than exponential (the well-known Gaussian Brownian noise case) but slower than polynomial (the stable Levy noise case), in terms of the reciprocal of the small noise intensity.

قيم البحث

اقرأ أيضاً

133 - Xin Liu , Zhenxin Liu 2020
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri odic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
In this paper we study the asymptotic properties of the power variations of stochastic processes of the type X=Y+L, where L is an alpha-stable Levy process, and Y a perturbation which satisfies some mild Lipschitz continuity assumptions. We establish local functional limit theorems for the power variation processes of X. In case X is a solution of a stochastic differential equation driven by L, these limit theorems provide estimators of the stability index alpha. They are applicable for instance to model fitting problems for paleo-climatic temperature time series taken from the Greenland ice core.
Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm det erminant. The latter can be evaluated explicitly using Widoms theorem which generalizes the celebrated Szego-Kac formula to the multi-dimensional case. This provides a large class of dynamics with explicit path large deviation functionals. Inspired by problems in hydrodynamics and atmosphere dynamics, we present the simplest example of the emergence of metastability for such a process.
We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by {it white Levy noise} in a dynamical regime where inertial effects can safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing to the special character that underpins the noise-induced discontinuity which is caused by the generalized Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local boundary conditions that characterize the case with normal diffusion. By numerically implementing properly the set up boundary conditions, we investigate the survival probability and the average escape time as a function of the corresponding Levy white noise parameters. Depending on the value of the skewness $beta$ of the Levy noise, the escape can either become enhanced or suppressed: a negative asymmetry $beta$ causes typically a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the stability index $alpha$ which characterizes the jump length distribution of Levy noise, with a marked discontinuity occurring at $alpha=1$. We find that the typical factor of ``two that characterizes for normal diffusion the ratio between the MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently high barriers the survival probabilities assume an exponential behavior. Distinct non-exponential deviations occur, however, for low barrier heights.
Mixing rates and decay of correlations for dynamics defined by potentials with summable variations are well understood, but little is known for non-summable variations. In this paper, we exhibit upper bounds for these quantities in the case of dynami cs defined by potentials with square summable variations. We obtain these bounds as corollaries of a new block coupling inequality between pair of dynamics starting with different histories. As applications of our results, we prove a new weak invariance principle and a Chernoff-type inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا