ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity of LaOFeAs to a magnetic instability

41   0   0.0 ( 0 )
 نشر من قبل Ingo Opahle
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of external pressure on the Fe magnetic moment in undoped LaOFeAs within the framework of density functional theory and show that this system is close to a magnetic instability: The Fe moment is found to drop by nearly a factor of 3 within a pressure range of $pm$ 5 GPa around the calculated equilibrium volume. While the Fe moments show an unusually strong sensitivity to the spin arrangement (type of anti-ferromagnetic structure), the low temperature structural distortion is found to have only a minor influence on them. Analysis of the Fermi surface topology and nesting features shows that these properties change very little up to pressures of at least 10 GPa. We discuss the magnetic instability in terms of the itinerancy of this system.

قيم البحث

اقرأ أيضاً

When either electron or hole doped at concentrations $xsim 0.1$, the LaOFeAs family displays remarkably high temperature superconductivity with T$_c$ up to 55 K. In the most energetically stable $vec Q_M = (pi,pi)$ antiferromagnetic (AFM) phase compr ised of tetragonal-symmetry breaking alternating chains of aligned spins, there is a deep pseudogap in the Fe 3d states centered at the Fermi energy, and very strong magnetophonon coupling is uncovered. Doping (of either sign) beyond $x sim 0.1$ results in Fe 3d heavy mass carriers ($m^*sim 4-8$) with a large Fermi surface. Calculated Fe-Fe transverse exchange couplings $J_{ij}(R)$ reveal that exchange coupling is strongly dependent on the AFM symmetry and Fe-As distance.
111 - A.S. Sefat , D.J. Singh , R. Jin 2008
We report synthesis and single crystal measurements of magnetic, transport and thermal properties of single crystalline BaCo$_2$As$_2$ as well as first principles calculations of the electronic structure and magnetic behavior. These results show that BaCo$_2$As$_2$ is a highly renormalized paramagnet in proximity to a quantum critical point, presumably of ferromagnetic character and that BaFeNiAs$_2$ behaves similarly. These results are discussed in relation to the properties of Ba(Fe,Co)$_2$As$_2$ and Ba(Fe,Ni)$_2$As$_2$, which are superconducting for low Co and Ni concentrations.
84 - Taner Yildirim 2008
In a recent paper [arXiv:0804.3569], Takatoshi Nomura {it et al.} reported a structural phase transition near 150 K in LaOFeAs and used space group Cmma to describe their X-ray diffraction data. However, they did not discuss how their proposed struct ure compares with the early neutron study by Cruz {it et al.}[arXiv:0804.0795] where the low temperature structure of LaOFeAs was described by space group P112/n. This caused some confusion, suggesting that there may be some disagreement on the low temperature structure of LaOFeAs as evidenced by several inquiries that we received. Here we show that the proposed structures from x-ray and neutron diffraction are basically identical. The P2/c (i.e., P112/n) cell becomes the primitive cell of the Cmma cell when the z-coordinate of the oxygen and iron are assumed to be exactly 0 and 0.5 (these numbers were reported to be -0.0057 and 0.5006 in neutron study). Our first-principles total-energy calculations suggest that the oxygen and iron atoms prefer to lie on the z=0 and 1/2 plane, respectively, supporting Cmma symmetry. However it is more convenient to describe the structural distortion in the primitive P2/c cell which makes it easier to see the connection between the high (i.e., P4/nmm) and low temperature structures.
In the following paper we investigate the critical temperature $T_c$ behavior in the two-dimensional S/TI (S denotes superconductor and TI - topological insulator) junction with a proximity induced in-plane helical magnetization in the TI surface. Th e calculations of $T_c$ are performed using the general self-consistent approach based on the Usadel equations in Matsubara Greens functions technique. We show that the presence of the helical magnetization leads to the nonmonotonic behavior of the critical temperature as a function of the topological insulator layer thickness.
75 - M.H. Fang , H.M. Pham , B. Qian 2008
We report our study of the evolution of superconductivity and the phase diagram of the ternary Fe(Se1-xTex)0.82 (0<=x<=1.0) system. We discovered a new superconducting phase with Tc,max = 14 K in the 0.3 < x < 1.0 range. This superconducting phase is suppressed when the sample composition approaches the end member FeTe0.82, which exhibits an incommensurate antiferromagnetic order. We discuss the relationship between the superconductivity and magnetism of this material system in terms of recent results from neutron scattering measurements. Our results and analyses suggest that superconductivity in this new class of Fe-based compounds is associated with magnetic fluctuations, and therefore may be unconventional in nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا