ﻻ يوجد ملخص باللغة العربية
The Kroll-Lee-Zumino renormalizable Abelian quantum field theory of pions and a massive rho-meson is used to calculate the scalar radius of the pion at next to leading (one loop) order in perturbation theory. Due to renormalizability, this determination involves no free parameters. The result is $<r^2_pi>_s = 0.40 {fm}^2$. This value gives for $bar{ell}_4$, the low energy constant of chiral perturbation theory, $bar{ell}_4 = 3.4$, and $F_pi/F = 1.05$, where F is the pion decay constant in the chiral limit. Given the level of accuracy in the masses and the $rhopipi$ coupling, the only sizable uncertainty in this result is due to the (uncalculated) NNLO contribution.
The quadratic pion scalar radius, la r^2ra^pi_s, plays an important role for present precise determinations of pipi scattering. Recently, Yndurain, using an Omn`es representation of the null isospin(I) non-strange pion scalar form factor, obtains la
The Kroll-Lee-Zumino renormalizable Abelian quantum field theory of pionic strong interactions is used to compute the rho-meson propagator at the two-loop level.
We derive expression for the large b_perp asymptotic of the 3D parton distributions q(x,b_perp) in the pion. The asymptotic depends exclusively on the mass scales F_pi and m_pi. Therefore it provides us with a nice example of a strict non-perturbativ
We compute the Green function of the massless scalar field theory in the infrared till the next-to-leading order, providing a fully covariant strong coupling expansion. Applying Callan-Symanzik equation we obtain the exact running coupling for this c
With the aim of extracting the pion charge radius, we analyse extant precise pion+electron elastic scattering data on $Q^2 in [0.015,0.144],$GeV$^2$ using a method based on interpolation via continued fractions augmented by statistical sampling. The