ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared behavior of the running coupling in scalar field theory

500   0   0.0 ( 0 )
 نشر من قبل Marco Frasca
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Marco Frasca




اسأل ChatGPT حول البحث

We compute the Green function of the massless scalar field theory in the infrared till the next-to-leading order, providing a fully covariant strong coupling expansion. Applying Callan-Symanzik equation we obtain the exact running coupling for this case by computing the beta function. This result is applied using a recently proved mapping theorem between a massless scalar field theory and Yang-Mills theory. This beta function gives a running coupling going to zero as $p^4$ in agreement with lattice results presented in Boucaud et al. [JHEP 0304 (2003) 005] and showing that the right definition of the running coupling for a Yang-Mills theory in the infrared is given in a MOM scheme. The emerging scenario is supporting a quantum field theory based on instantons.



قيم البحث

اقرأ أيضاً

We extend our study of deriving the local gauge invariance with spontaneous symmetry breaking in the context of an effective field theory by considering self-interactions of the scalar field and inclusion of the electromagnetic interaction. By analyz ing renormalizability and the scale separation conditions of three-, four- and five-point vertex functions of the scalar field, we fix the two couplings of the scalar field self-interactions of the leading order Lagrangian. Next we add the electromagnetic interaction and derive conditions relating the magnetic moment of the charged vector boson to its charge and the masses of the charged and neutral massive vector bosons to each other and the two independent couplings of the theory. We obtain the bosonic part of the Lagrangian of the electroweak Standard Model as a unique solution to the conditions imposed by the self-consistency conditions of the considered effective field theory.
We revisit the problem of deriving local gauge invariance with spontaneous symmetry breaking in the context of an effective field theory. Previous derivations were based on the condition of tree-order unitarity. However, the modern point of view cons iders the Standard Model as the leading order approximation to an effective field theory. As tree-order unitarity is in any case violated by higher-order terms in an effective field theory, it is instructive to investigate a formalism which can be also applied to analyze higher-order interactions. In the current work we consider an effective field theory of massive vector bosons interacting with a massive scalar field. We impose the conditions of generating the right number of constraints for systems with spin-one particles and perturbative renormalizability as well as the separation of scales at one-loop order. We find that the above conditions impose severe restrictions on the coupling constants of the interaction terms. Except for the strengths of the self-interactions of the scalar field, that can not be determined at this order from the analysis of three- and four-point functions, we recover the gauge-invariant Lagrangian with spontaneous symmetry breaking taken in the unitary gauge as the leading order approximation to an effective field theory. We also outline the additional work that is required to finish this program.
We investigate the running vacuum model (RVM) in the framework of scalar field theory.This dynamical vacuum model provides an elegant global explanation of the cosmic history, namely the universe starts from a non-singular initial de Sitter vacuum st age, it passes smoothly from an early inflationary era to a radiation epoch (graceful exit) and finally it enters the dark matter and dark energy (DE) dominated epochs, where it can explain the large entropy problem and predicts a mild dynamical evolution of the DE. Within this phenomenologically appealing context, we formulate an effective {it classical} scalar field description of the RVM through a field $phi$, called the {it vacuumon}, which turns out to be very helpful for an understanding and practical implementation of the physical mechanisms of the running vacuum during both the early universe and the late time cosmic acceleration. In the early universe the potential for the vacuumon may be mapped to a potential that behaves similarly to that of the scalaron field of Starobinsky-type inflation at the {it classical} level, whilst in the late universe it provides an effective scalar field description of DE. The two representations, however, are not physically equivalent since the mechanisms of inflation are entirely different. Moreover, unlike the scalaron, vacuumon is treated as a classical background field, and not a fully fledged quantum field, hence cosmological perturbations will be different between the two pictures of inflation.
394 - T. Appelquist 2013
Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in non-supersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior.
We present a review of our numerical studies of the running coupling constant, gluon and ghost propagators, ghost-gluon vertex and ghost condensate for the case of pure SU(2) lattice gauge theory in the minimal Landau gauge. Emphasis is given to the infrared regime, in order to investigate the confinement mechanisms of QCD. We compare our results to other theoretical and phenomenological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا