ﻻ يوجد ملخص باللغة العربية
In this work we suggest a very simple, approximate formalism for description of some basic (especially thermodynamical) characteristics of a rotating, very thin black ring. (In fact, our formalism is not theoretically dubious, since, at it is not hard to see, it can correspond to an extreme simplification of a more accurate, Copeland-Lahiri string formalism for the black hole description.) Even if suggested formalism is, generally speaking, phenomenological and rough, obtained final results, unexpectedly, are non-trivial. Concretely, given formalism reproduces exactly Bekenstein-Hawking entropy, Bekenstein quantization of the entropy or horizon area and Hawking temperature of a rotating, very thin black ring obtained earlier using more accurate analysis by Reall, Emparan, Elvang, Virmani etc. (Conceptually it is similar to situation in Bohrs atomic model where energy levels are determined practically exactly even if electron motion is described roughly.) Our formalism, according to suggestions in our previous works, is physically based on the assumption that circumference of the horizon tube holds the natural (integer) number of corresponding reduced Comptons wave length. (It is conceptually similar to Bohrs quantization postulate in Bohrs atomic model interpreted by de Broglie relation.) Also, we use, mathematically, practically only simple algebraic equations (by determination of Hawking temperature we use additionally only simple differentiation of Smarr relation).
In our previous work we suggested a very simple, approximate formalism for description of some basic (especially thermodynamical) characteristics of a non-charged, rotating, very thin black ring. Here, in our new work, generalizing our previous resul
In this work, generalizing our previous results, we determine in an original and the simplest way three most important thermodynamical characteristics (Bekenstein-Hawking entropy, Bekenstein quantization of the entropy or (outer) horizon surface area
In this work, starting by simple, approximate (quasi-classical) methods presented in our previous works, we reproduce effectively and generalize final results of Herdeiro and Rebelo on the basic thermodynamical characteristics (entropy and temperatur
In this work, starting by simple, approximate (quasi-classical) methods presented in our previous works, we suggest a simple determination of the (logarithmic) corrections of (Schwarzschild) black hole entropy without knowing the details of quantum g
In this work we present a generalized Laplace method for a formal, simple, quasi-classical, determination of the outer and inner horizon radius of Kerr-Newman black hole. We consider classical gravitational interaction between a thin, with homogeneou