ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamical Characteristics of Crystal Lattice of Many Interacting Kerr Black Holes in Touching Limit

52   0   0.0 ( 0 )
 نشر من قبل Miodrag Krmar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, starting by simple, approximate (quasi-classical) methods presented in our previous works, we reproduce effectively and generalize final results of Herdeiro and Rebelo on the basic thermodynamical characteristics (entropy and temperature) of two interacting Kerr black holes (in touching limit) obtained recently by accurate analysis. Like as it has been done in our previous works, we simply suppose that circumference of the horizon of total black hole (that includes two or, generally, a crystal lattice of many interacting Kerr black holes in touching limit, without angular momentum) holds integer number of reduced Compton wave lengths corresponding to mass spectrum of a small quantum system captured at horizon. (Obviously it is conceptually analogous to Bohr quantization postulate interpreted by de Broglie relation in Old, Bohr-Sommerfeld, quantum theory.) It, by simple mathematical methods, first neighbour approximation of the black holes interaction and first thermodynamical law, implies mentioned basic thermodinamical characteristic of the total black hole as well as any its part, i.e. single black hole. Especially, it is shown that, in limit of increasing number of the black holes, entropy and horizon surface of the total black hole stand observables of the discrete spectrum while entropy and horizon surface of the single black hole tends toward observables of the continuous spectrum.

قيم البحث

اقرأ أيضاً

In this work, generalizing our previous results, we determine in an original and the simplest way three most important thermodynamical characteristics (Bekenstein-Hawking entropy, Bekenstein quantization of the entropy or (outer) horizon surface area and Hawking temperature) of Kerr-Newman black hole. We start physically by assumption that circumference of Kerr-Newman black hole (outer) horizon holds the natural (integer) number of corresponding reduced Comptons wave length and use mathematically, practically, only simple algebraic equations. (It is conceptually similar to Bohrs quantization postulate in Bohrs atomic model interpreted by de Broglie relation.)
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of t his kind of black holes depend on the time and the angle. Further, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for slowly varying nonstationary Kerr-Newman black holes. Also, we show that the deduced general results can be degenerated to the known conclusion of stationary Kerr-Newman black holes.
Ongoing observations in the strong-field regime are in optimal agreement with general relativity, although current errors still leave room for small deviations from Einsteins theory. Here we summarise our recent results on superradiance of scalar and electromagnetic test fields in Kerr-like spacetimes, focusing mainly on the Konoplya--Zhidenko metric. We observe that, while for large deformations with respect to the Kerr case superradiance is suppressed, it can be nonetheless enhanced for small deformations. We also study the superradiant instability caused by massive scalar fields, and we provide a first estimate of the effect of the deformation on the instability timescale.
Recent strong-field regime tests of gravity are so far in agreement with general relativity. In particular, astrophysical black holes appear all to be consistent with the Kerr spacetime, but the statistical error on current observations allows for sm all yet detectable deviations from this description. Here we study superradiance of scalar and electromagnetic test fields around the Kerr-like Konoplya--Zhidenko black hole and we observe that for large values of the deformation parameter superradiance is highly suppressed with respect to the Kerr case. Surprisingly, there exists a range of small values of the deformation parameter for which the maximum amplification factor is larger than the Kerr one. We also provide a first result about the superradiant instability of these non-Kerr spacetimes against massive scalar fields.
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a rbitrary, multipolar tidal environment. By solving the static Teukolsky equation for the gauge-invariant Weyl scalar $psi_0$, and by reconstructing the corresponding metric perturbation in an ingoing radiation gauge, for a general harmonic index $ell$, we compute the linear response of a Kerr black hole to the tidal field. This linear response vanishes identically for a Schwarzschild black hole and for an axisymmetric perturbation of a spinning black hole. For a nonaxisymmetric perturbation of a spinning black hole, however, the linear response does not vanish, and it contributes to the Geroch-Hansen multipole moments of the perturbed Kerr geometry. As an application, we compute explicitly the rotational black hole tidal Love numbers that couple the induced quadrupole moments to the quadrupolar tidal fields, to linear order in the black hole spin, and we introduce the corresponding notion of tidal Love tensor. Finally, we show that those induced quadrupole moments are closely related to the well-known physical phenomenon of tidal torquing of a spinning body interacting with a tidal gravitational environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا