ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control of ac Stark allowed transition in $Lambda$ system

113   0   0.0 ( 0 )
 نشر من قبل Gennady Koganov A
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index may occur on electric-dipole forbidden transitions. Gain/dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and probe fields. Unlike allowed transitions, gain/absorption behavior of forbidden transitions exhibit antisymmetric feature on the Rabi sidebands. Absorption/gain spectra possess extremely narrow sub-natural resonances.

قيم البحث

اقرأ أيضاً

The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%.
A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged qua ntum dot, shifting one spin manifold but not the other. An additional shift occurs due to the Overhauser field of the nuclear spins, which are pumped into a partially polarized state. This mechanism offers a potentially rapid, reversible, and coherent control of the energy structure and polarization selection rules of a charged quantum dot.
We propose a technique to prepare coherent superpositions of two nondegenerate quantum states in a three-state ladder system, driven by two simultaneous fields near resonance with an intermediate state. The technique, of potential application to enha ncement of nonlinear processes, uses adiabatic passage assisted by dynamic Stark shifts induced by a third laser field. The method offers significant advantages over alternative techniques: (i) it does not require laser pulses of specific shape and duration and (ii) it requires less intense fields than schemes based on two-photon excitation with non-resonant intermediate states. We discuss possible experimental implementation for enhancement of frequency conversion in mercury atoms.
We have measured the ac-Stark shift of the 4s2 1S0 - 4s4p 3P1 line in 40Ca for perturbing laser wavelengths between 780 nm and 1064 nm with a time domain Ramsey-Borde atom interferometer. We found a zero crossing of the shift for the mS = 0 - mP = 0 transition and sigma polarized perturbation at 800.8(22) nm. The data was analyzed by a model deriving the energy shift from known transition wavelengths and strengths. To fit our data, we adjusted the Einstein A coefficients of the 4s3d 3D - 4s4p 3P and 4s5s 3S - 4s4p 3P fine structure multiplets. With these we can predict vanishing ac-Stark shifts for the 1S0 m = 0 - 3P1 m = 1 transition and sigma- light at 983(12) nm and at 735.5(20) nm for the transition to the 3P0 level.
Lifetime limited optical excitation lines of single nitrogen vacancy (NV) defect centers in diamond have been observed at liquid helium temperature. They display unprecedented spectral stability over many seconds and excitation cycles. Spectral tunin g of the spin selective optical resonances was performed via the application of an external electric field (i.e. the Stark shift). A rich variety of Stark shifts were observed including linear as well as quadratic components. The ability to tune the excitation lines of single NV centers has potential applications in quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا